4.7 Article

Effect of temperature gradient on composition and morphology of synthetic chlorine-containing biomass boiler deposits

Journal

FUEL PROCESSING TECHNOLOGY
Volume 141, Issue -, Pages 285-298

Publisher

ELSEVIER
DOI: 10.1016/j.fuproc.2015.10.011

Keywords

Temperature gradient; Superheater deposit; Molten salt; Alkali chloride; Computational fluid dynamics

Funding

  1. Academy of Finland [266384]
  2. National Technology Agency of Finland (Tekes)
  3. Andritz Oy
  4. Metso (Valmet) Power Oy
  5. Foster Wheeler Energia Oy
  6. UPM-Kymmene Oyj
  7. Clyde Bergemann GmbH
  8. International Paper Inc.
  9. Top Analytica Oy Ab (Tekes) [235/11]
  10. Academy of Finland (AKA) [266384, 266384] Funding Source: Academy of Finland (AKA)

Ask authors/readers for more resources

A novel laboratory method has been developed to study the chemical and physical behavior of ash deposits in a temperature gradient. Experiments with synthetic alkali salt mixtures similar to biomass boiler deposits show that alkali chlorides evaporate from hotter particles in the deposit and condense on colder particles closer to the cooled metal surface or even condense on the metal surface. Formation of a partially or completely molten layer in the outer hotter region closer to the flue gas is also observed in the experiments. The effect of time is shown to be significant for the enrichment of chlorides as longer experiment time leads to higher amounts of vaporization, transport and condensation within the deposits. These effects are quantitatively verified using Computational Fluid Dynamics modeling. The transport of alkali chloride vapors becomes negligible if the deposit and metal temperature is cold enough. An enrichment of alkali chlorides towards the cooled metal surface occurs and can increase chlorine-induced corrosion of superheaters as the deposits mature over time. The experimental observations are similar to superheater deposit morphologies observed in biomass boilers, such as straw-fired grate boilers. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available