4.5 Article

Identification, characterization and expression analysis of lineage-specific genes within mangrove species Aegiceras corniculatum

Journal

MOLECULAR GENETICS AND GENOMICS
Volume 296, Issue 6, Pages 1235-1247

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00438-021-01810-0

Keywords

Aegiceras; Lineage-specific genes; Gene duplication; Expression profiling; Adaptive evolution

Funding

  1. National Key Research and Development Program of China [2017YFC0506102]
  2. Natural Science Foundation of China (NSFC) [31870581, 31570586]

Ask authors/readers for more resources

This study systematically analyzed the aegiceras-specific genes (ASGs) in Aegiceras corniculatum, revealing their origin mainly from gene duplication and characteristics in gene structure and expression patterns. ASGs are mainly involved in pathways related to adversity stress, including plant hormone signal transduction and photosynthesis, and exhibit co-expression relationships in gene modules.
Lineage-specific genes (LSGs) are the genes that have no recognizable homology to any sequences in other species, which are important drivers for the generation of new functions, phenotypic changes, and facilitating species adaptation to environment. Aegiceras corniculatum is one of major mangrove plant species adapted to waterlogging and saline conditions, and the exploration of aegiceras-specific genes (ASGs) is important to reveal its adaptation to the harsh environment. Here, we performed a systematic analysis on ASGs, focusing on their sequence characterization, origination and expression patterns. Our results reveal that there are 4823 ASGs in the genome, approximately 11.84% of all protein-coding genes. High proportion (45.78%) of ASGs originate from gene duplication, and the time of gene duplication of ASGs is consistent with the timing of two genome-wide replication (WGD) events that occurred in A. corniculatum, and also coincides with a short period of global warming during the Paleocene-Eocene Maximum (PETM, 55.5 million years ago). Gene structure analysis showed that ASGs have shorter protein lengths, fewer exons, and higher isoelectric point. Expression patterns analysis showed that ASGs had low levels of expression and more tissue-specific expression. Weighted gene co-expression network analysis (WGCNA) revealed that 86 ASGs co-expressed gene modules were primarily involved in pathways related to adversity stress, including plant hormone signal transduction, phenylpropanoid biosynthesis, photosynthesis, peroxisome and pentose phosphate pathway. This study provides a comprehensive analysis of the characteristics and potential functions of ASGs and identifies key candidate genes, which will contribute to the subsequent further investigation of the adaptation of A. corniculatum to intertidal coastal wetland habitats.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available