4.7 Article

Disentangling adaptation from drift in bottlenecked and reintroduced populations of Alpine ibex

Journal

MOLECULAR ECOLOGY RESOURCES
Volume 21, Issue 7, Pages 2350-2363

Publisher

WILEY
DOI: 10.1111/1755-0998.13442

Keywords

bottleneck; conservation; evolutionary management; outlier; reintroduction

Funding

  1. Universitat Zurich

Ask authors/readers for more resources

Identifying local adaptation in bottlenecked species is crucial, and methods for detecting selection play an important role in species management and response to climate change. However, distinguishing selection signals from genetic drift in bottlenecked populations is challenging. This study used simulations to evaluate the accuracy of selection detection methods in Alpine ibex populations, finding high false positive rates but improved accuracy when combining multiple methods.
Identifying local adaptation in bottlenecked species is essential for conservation management. Selection detection methods have an important role in species management plans, assessments of adaptive capacity, and looking for responses to climate change. Yet, the allele frequency changes exploited in selection detection methods are similar to those caused by the strong neutral genetic drift expected during a bottleneck. Consequently, it is often unclear what accuracy selection detection methods have across bottlenecked populations. In this study, simulations were used to explore if signals of selection could be confidently distinguished from genetic drift across 23 bottlenecked and reintroduced populations of Alpine ibex (Capra ibex). The meticulously recorded demographic history of the Alpine ibex was used to generate comprehensive simulated SNP data. The simulated SNPs were then used to benchmark the confidence we could place in outliers identified in empirical Alpine ibex RADseq derived SNP data. Within the simulated data set, the false positive rates were high for all selection detection methods (F-ST outlier scans and Genetic-Environment Association analyses) but fell substantially when two or more methods were combined. True positive rates were consistently low and became negligible with increased stringency. Despite finding many outlier loci in the empirical Alpine ibex SNPs, none could be distinguished from genetic drift-driven false positives. Unfortunately, the low true positive rate also prevents the exclusion of recent local adaptation within the Alpine ibex. The baselines and stringent approach outlined here should be applied to other bottlenecked species to ensure the risk of false positive, or negative, signals of selection are accounted for in conservation management plans.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available