4.8 Article

KARATE: PKA-induced KRAS4B-RHOA-mTORC2 supercomplex phosphorylates AKT in insulin signaling and glucose homeostasis

Journal

MOLECULAR CELL
Volume 81, Issue 22, Pages 4622-+

Publisher

CELL PRESS
DOI: 10.1016/j.molcel.2021.09.001

Keywords

-

Funding

  1. NIH [GM131768, NS114458, GM123266, GM130695]
  2. Sol Goldman Pancreatic Cancer Research Center
  3. Robert J. Kleberg, Jr. and Helen C. Kleberg Foundation

Ask authors/readers for more resources

AKT, a serine/threonine kinase, plays a crucial role in metabolism, cell growth, and cytoskeletal dynamics, and is activated by PDK1 and mTORC2. Research has uncovered that insulin activates mTORC2 towards AKT by forming a supercomplex KARATE with KRAS4B and RHOA GTPases, revealing a fundamental mechanism in insulin-regulated glucose homeostasis.
AKT is a serine/threonine kinase that plays an important role in metabolism, cell growth, and cytoskeletal dynamics. AKT is activated by two kinases, PDK1 and mTORC2. Although the regulation of PDK1 is well understood, the mechanism that controls mTORC2 is unknown. Here, by investigating insulin receptor signaling in human cells and biochemical reconstitution, we found that insulin induces the activation of mTORC2 toward AKT by assembling a supercomplex with KRAS4B and RHOA GTPases, termed KARATE (KRAS4B-RHOAmTORC2 Ensemble). Insulin-induced KARATE assembly is controlled via phosphorylation of GTP-bound KRAS4B at S181 and GDP-bound RHOA at S188 by protein kinase A. By developing a KARATE inhibitor, we demonstrate that KRAS4B-RHOA interaction drives KARATE formation. In adipocytes, KARATE controls insulin-dependent translocation of the glucose transporter GLUT4 to the plasma membrane for glucose uptake. Thus, our work reveals a fundamental mechanism that activates mTORC2 toward AKT in insulin -regulated glucose homeostasis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available