4.5 Article

Skin cancer detection from dermoscopic images using deep learning and fuzzy k-means clustering

Journal

MICROSCOPY RESEARCH AND TECHNIQUE
Volume 85, Issue 1, Pages 339-351

Publisher

WILEY
DOI: 10.1002/jemt.23908

Keywords

deep learning; faster-RCNN; fuzzy c-means clustering; melanoma; skin cancer

Ask authors/readers for more resources

This study presents a fully automated method for segmenting melanoma skin cancer using deep learning and fuzzy k-means clustering, aiming to aid in the early diagnosis and treatment of this disease. Evaluation on three standard datasets shows that the method outperforms state-of-the-art approaches in skin lesion recognition and segmentation, demonstrating robustness.
Melanoma skin cancer is the most life-threatening and fatal disease among the family of skin cancer diseases. Modern technological developments and research methodologies made it possible to detect and identify this kind of skin cancer more effectively; however, the automated localization and segmentation of skin lesion at earlier stages is still a challenging task due to the low contrast between melanoma moles and skin portion and a higher level of color similarity between melanoma-affected and -nonaffected areas. In this paper, we present a fully automated method for segmenting the skin melanoma at its earliest stage by employing a deep-learning-based approach, namely faster region-based convolutional neural networks (RCNN) along with fuzzy k-means clustering (FKM). Several clinical images are utilized to test the presented method so that it may help the dermatologist in diagnosing this life-threatening disease at its earliest stage. The presented method first preprocesses the dataset images to remove the noise and illumination problems and enhance the visual information before applying the faster-RCNN to obtain the feature vector of fixed length. After that, FKM has been employed to segment the melanoma-affected portion of skin with variable size and boundaries. The performance of the presented method is evaluated on the three standard datasets, namely ISBI-2016, ISIC-2017, and PH2, and the results show that the presented method outperforms the state-of-the-art approaches. The presented method attains an average accuracy of 95.40, 93.1, and 95.6% on the ISIC-2016, ISIC-2017, and PH2 datasets, respectively, which is showing its robustness to skin lesion recognition and segmentation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available