4.3 Article

Correlation Determination between COVID-19 and Weather Parameters Using Time Series Forecasting: A Case Study in Pakistan

Journal

MATHEMATICAL PROBLEMS IN ENGINEERING
Volume 2021, Issue -, Pages -

Publisher

HINDAWI LTD
DOI: 10.1155/2021/9953283

Keywords

-

Funding

  1. National Natural Science Foundation of China [71690242, 91546118, 11731014]

Ask authors/readers for more resources

Infectious diseases like COVID-19 have caused substantial economic losses worldwide, including in Pakistan. The relationship between weather parameters and COVID-19 transmission has been studied, with temperature and humidity playing key roles in affecting the spread. Higher temperatures are associated with lower mortality rates due to COVID-19 infection.
Infectious diseases like COVID-19 spread rapidly and have led to substantial economic loss worldwide, including in Pakistan. The effect of weather on COVID-19 spreading needs more detailed examination, as some studies have claimed to mitigate its spread. COVID-19 was declared a pandemic by WHO and has been reported in about 210 countries worldwide, including Asia, Europe, the USA, and North America. Person-to-person contact and international air travel between the nations were the leading causes behind the spreading of SARS-CoV-2 from its point of origin, besides the natural forces. However, further spread and infection within the community or country can be aided by natural elements, such as the weather. Therefore, the correlation between COVID-19 and temperature can be better elucidated in countries like Pakistan, where SARS-CoV-2 has affected at least 0.37 million people. This study collected Pakistan's COVID-19 infection and mortality data for ten months (March-December 2020). Related weather parameters, temperature, and humidity were also obtained for the same course of time. The collected data were processed and used to compare the performance of various time series prediction models in terms of mean squared error (MSE), root-mean-squared error (RMSE), and mean absolute percentage error (MAPE). This paper, using the time series model, estimates the effect of humidity, temperature, and other weather parameters on COVID-19 transmission by obtaining the correlation among the total infected cases and the number of deaths and weather variables in a particular region. Results depict that weather parameters hold more influence in evaluating the sum number of cases and deaths than other factors like community, age, and the total population. Therefore, temperature and humidity are salient parameters for predicting COVID-19 affected instances. Moreover, it is concluded that the higher the temperature, the lesser the mortality due to COVID-19 infection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available