4.5 Article

Balancing Degradability and Physical Properties of Amorphous Poly(d,l-Lactide) by Making Blends

Journal

MACROMOLECULAR MATERIALS AND ENGINEERING
Volume 307, Issue 6, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/mame.202100602

Keywords

blends; compost; degradation; poly(d; l-lactide); poly(l; l-lactide); proteinase K; respirometers

Funding

  1. Deutsche Forschungsgemeinschaft (DFG) [C02- SFB 1357]
  2. Projekt DEAL

Ask authors/readers for more resources

The study found that blends of poly(l,l-lactide) degrade faster than homopolymers, but still result in persistent microplastics in compost. Further research on the degradation of polylactide in different environmental conditions is recommended to find better solutions.
The problem in using the existing biodegradable polymers for day-to-day commodity and specialty applications (non-physiological) is the trade-off between the degradability and physical properties of polymers. Therefore, the authors study the properties of polyester films made by solution blending of amorphous poly(d,l-lactide) and semi-crystalline poly(l,l-lactide) (PLLA) with an aim to achieve a good balance of mechanical properties and degradability under environmental conditions. The degradation test using proteinase K enzyme shows faster degradation of blends in comparison to homopolymers by weight loss. Faster fragmentation of blends and fragments of lower masses in comparison to PLLA is also seen in immature compost with bulk degradation as the main mechanism of degradation. A detailed investigation shows increased crystallinity and the formation of crystalline stereo-complex in fragmented samples that may limit degradation after a stage causing microplastics persisting for a longer period. Therefore, further degradation studies in compost for at least 8-10 weeks are recommended. Other environmental sinks, such as activated sludge water, fresh, and seawater, provide either extremely slow or no degradation excluding the use of such blends for applications intended for these sinks. In future, smart solutions are required to enhance the degradation of polylactide in different environmental sinks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available