4.6 Article

Using Microemulsion Phase Behavior as a Predictive Model for Lecithin-Tween 80 Marine Oil Dispersant Effectiveness

Journal

LANGMUIR
Volume 37, Issue 27, Pages 8115-8128

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.1c00651

Keywords

-

Funding

  1. Gulf of Mexico Research Initiative (GOMRI)
  2. University of Minnesota Industry Partnership for Research in Interfacial and Materials Engineering (IPRIME) through the Nanostructural Materials and Processes (NMP) program
  3. Undergraduate Research Opportunity Program (UROP) at the University of Minnesota
  4. ACS Project SEED Program
  5. National Science Foundation through the National Nano Coordinated Infra-structure Network (NNCI) [ECCS-1542202]

Ask authors/readers for more resources

The study found that LT dispersant blends containing L and T can induce broad Winsor III microemulsion regions in DOW phase diagrams, correlating with thermodynamic phase behavior. The research provides a protocol allowing observation of phase behavior on short time scales and a set of guidelines to interpret the results.
Marine oil dispersants typically contain blends of surfactants dissolved in solvents. When introduced to the crude oil-seawater interface, dispersants facilitate the breakup of crude oil into droplets that can disperse in the water column. Recently, questions about the environmental persistence and toxicity of commercial dispersants have led to the development of greener dispersants consisting solely of food-grade surfactants such as L-alpha-phosphatidylcholine (lecithin, L) and polyoxyethylenated sorbitan mono-oleate (Tween 80, T). Individually, neither L nor T is effective at dispersing crude oil, but mixtures of the two (LT blends) work synergistically to ensure effective dispersion. The reasons for this synergy remain unexplained. More broadly, an unresolved challenge is to be able to predict whether a given surfactant (or a blend) can serve as an effective dispersant. Herein, we investigate whether the LT dispersant effectiveness can be correlated with thermodynamic phase behavior in model systems. Specifically, we study ternary DOW systems comprising LT dispersant (D) + a model oil (hexadecane, O) + synthetic seawater (W), with the D formulation being systematically varied (across 0:100, 20:80, 40:60, 60:40, 80:20, and 100:0 L:T weight ratios). We find that the most effective LT dispersants (60:40 and 80:20 L:T) induce broad Winsor III microemulsion regions in the DOW phase diagrams (Winsor III implies that the microemulsion coexists with aqueous and oil phases). This correlation is generally consistent with expectations from hydrophilic-lipophilic deviation (HLD) calculations, but specific exceptions are seen. This study then outlines a protocol that allows the phase behavior to be observed on short time scales (ca. hours) and provides a set of guidelines to interpret the results. The complementary use of HLD calculations and the outlined fast protocol are expected to be used as a predictive model for effective dispersant blends, providing a tool to guide the efficient formulation of future marine oil dispersants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available