4.7 Article

NADPH oxidase activation is required for pentylenetetrazole kindling-induced hippocampal autophagy

Journal

FREE RADICAL BIOLOGY AND MEDICINE
Volume 94, Issue -, Pages 230-242

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2016.03.004

Keywords

PTZ kindling; Epilepsy; NADPH oxidase; ROS; Autophagy

Funding

  1. Natural Science Foundation of Jiangsu Province [BK20141335]
  2. Specialized Research Fund for the Doctoral Program of Higher Education [20130092120043]
  3. Scientific Research Foundation of the State Education Ministry for the Returned Overseas Chinese Scholars [311]

Ask authors/readers for more resources

Growing evidence indicates that alterations in autophagy are present in a variety of neurological disorders, ranging from neurodegenerative diseases to acute neurological insults. Only recently has the role of autophagy in epilepsy started to be recognized. In this study, we used pentylenetetrazole (PTZ) kindling, which provides a model of chronic epilepsy, to investigate the involvement of autophagy in the hippocampus and the possible mechanisms involved. Our western blot results showed that autophagy-related proteins were significantly increased after the mice were fully kindled. In addition, immunofluorescence studies revealed a significant increase in the punctate accumulation of LC3 in the hippocampal CA1 region of fully PTZ-kindled mice. Consistent with the upregulation of ATG proteins and punctate accumulation of LC3 in the hippocampal CA1 region, autophagosomal vacuole formation was observed by an ultrastructural analysis, verifying the presence of a hippocampal autophagic response in PTZ-kindled mice. Increased oxidative stress has been postulated to play an important role in the pathogenesis of a number of neurological diseases, including epilepsy. In this study, we demonstrate that PTZ kindling induced reactive oxygen species (ROS) production and lipid peroxidation, which were accompanied by mitochondrial ultrastructural damage due to the activation of NADPH oxidase. Pharmacological inhibition of NADPH oxidase by apocynin significantly suppressed the oxidative stress and ameliorated the hippocampal autophagy in PTZ-kindled mice. Interestingly, pharmacological induction of autophagy suppressed PTZ-kindling progress and reduced PTZ-kindling-induced oxidative stress while inhibition of autophagy accelerated PTZ kindling progress and increased PTZ-kindling-induced oxidative stress. These results suggest that the oxidative stress induced by NADPH oxidase activation may play a pivotal role in PTZ-kindling process as well as in PTZ kindling-induced hippocampal CA1 autophagy. (C) 2016 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available