4.7 Article

Key role of cysteine residues and sulfenic acids in thermal- and H2O2-mediated modification of β-lactoglobulin

Journal

FREE RADICAL BIOLOGY AND MEDICINE
Volume 97, Issue -, Pages 544-555

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2016.07.010

Keywords

Protein oxidation; Aggregation; Thiol; Sulfenic acid; Lactoglobulin; Whey protein

Funding

  1. Novo Nordisk Foundation [NNF13OC0004294]
  2. Innovation Fund Denmark [5158-00020B]
  3. Novo Nordisk Fonden [NNF13OC0004294] Funding Source: researchfish

Ask authors/readers for more resources

Oxidation results in protein deterioration in mammals, plants, foodstuffs and pharmaceuticals, via changes in amino acid composition, fragmentation, aggregation, solubility, hydrophobicity, conformation, function and susceptibility to digestion. This study investigated whether and how individual or combined treatment with heat, a commonly encountered factor in industrial processing, and H2O2 alters the structure and composition of the major whey protein beta-lactoglobulin. Thermal treatment induced reducible cross-links, with this being enhanced by low H2O2 concentrations, but decreased by high concentrations, where fragmentation was detected. Cross-linking was prevented when the single free Cys121 residue was blocked with iodoacetamide. Low concentrations of H2O2 added before heating depleted thiols, with H2O2 alone, or H2O2 added after heating, having lesser effects. A similar pattern was detected for methionine loss and methionine sulfoxide formation. Tryptophan loss was only detected with high levels of H2O2, and no other amino acid was affected, indicating that sulfur-centered amino acids are critical targets. No protection against aggregation was provided by high concentrations of the radical scavenger 5, 5-dimethyl-l-pyrroline N-oxide (DMPO), consistent with molecular oxidation, rather than radical reactions, being the major process. Sulfenic acid formation was detected by Western blotting and LC MS/MS peptide mass-mapping of dimedone-treated protein, consistent with these species being significant intermediates in heat-induced cross-linking, especially in the presence of H2O2. Studies using circular dichroism and intrinsic fluorescence indicate that H2O2 increases unfolding during heating. These mechanistic insights provide potential strategies for modulating the extent of modification of proteins exposed to thermal and oxidant treatment. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available