4.6 Article

DandeLiion v1: An Extremely Fast Solver for the Newman Model of Lithium-Ion Battery (Dis)charge

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 168, Issue 6, Pages -

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1945-7111/ac085f

Keywords

Batteries-Li-ion; P2D; Newman model; Porous electrode theory; Simulation engine; Finite elements

Funding

  1. Faraday Institution Multi-Scale Modelling (MSM) project [EP/S003053/1]

Ask authors/readers for more resources

DandeLiion is a fast solver for the DFN model, conserves lithium, and is many times faster than competitors, making it particularly suitable for applications involving multiple coupled cells.
DandeLiion (available at dandeliion.com) is a robust and extremely fast solver for the Doyle Fuller Newman (DFN) model, the standard electrochemical model for (dis)charge of a planar lithium-ion cell. DandeLiion conserves lithium, uses a second order spatial discretisation method (enabling accurate computations using relatively coarse discretisations) and is many times faster than its competitors. The code can be used in the cloud and does not require installation before use. The difference in compute time between DandeLiion and its commercial counterparts is roughly a factor of 100 for the moderately-sized test case of the discharge of a single cell. Its linear scaling property means that the disparity in performance is even more pronounced for bigger systems, making it particularly suitable for applications involving multiple coupled cells. The model is characterised by a number of phenomenological parameters and functions, which may either be provided by the user or chosen from DandeLiion's library. This library contains data for the most commonly used electrolyte (LiPF6) and a number of common active material chemistries including graphite, lithium iron phosphate (LFP), nickel cobalt aluminum (NCA), and a variant of nickel cobalt manganese (NMC).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available