4.6 Article

Transport Phenomena in Low Temperature Lithium-Ion Battery Electrolytes

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 168, Issue 8, Pages -

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1945-7111/ac1735

Keywords

Batteries- Li-ion; Theory and Modelling; Ion Transport; Low Temperature Electrolytes

Funding

  1. Vehicle Technologies Office, of the U.S. Department of Energy [DE-AC02-05CH11231]
  2. U.S. Department of Energy
  3. UC Berkeley

Ask authors/readers for more resources

The main factor affecting low temperature transport in LP57 is solvent viscosity, not ion aggregation or cation transference number. Ion aggregation decreases with decreasing temperature, while cation transference number is positive and roughly independent of temperature.
Lithium-ion batteries face low temperature performance issues, limiting the adoption of technologies ranging from electric vehicles to stationary grid storage. This problem is thought to be exacerbated by slow transport within the electrolyte, which in turn may be influenced by ion association, solvent viscosity, and cation transference number. How these factors collectively impact low temperature transport phenomena, however, remains poorly understood. Here we show using all-atom classical molecular dynamics (MD) simulations that the dominant factor influencing low temperature transport in LP57 (1 M LiPF6 in 3:7 ethylene carbonate (EC)/ethyl methyl carbonate (EMC)) is solvent viscosity, rather than ion aggregation or cation transference number. We find that ion association decreases with decreasing temperature, while the cation transference number is positive and roughly independent of temperature. In an effort to improve low temperature performance, we introduce gamma-butyrolactone (GBL) as a low viscosity co-solvent to explore two alternative formulations: 1 M LiPF6 in 15:15:70 EC/GBL/EMC and 3:7 GBL/EMC. While GBL reduces solution viscosity, its low dielectric constant results in increased ion pairing, yielding neither improved bulk ionic conductivity nor appreciably altered ion transport mechanisms. We expect that these results will enhance understanding of low temperature transport and inform the development of superior electrolytes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available