4.8 Article

Scalable Room-Temperature Synthesis of Highly Robust Ethane-Selective Metal-Organic Frameworks for Efficient Ethylene Purification

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 143, Issue 23, Pages 8654-8660

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.1c02108

Keywords

-

Funding

  1. Tianjin Natural Science Foundation [20JCJQJC00170]
  2. National Natural Science Foundation of China [21971126]
  3. 111 Project [B12015]

Ask authors/readers for more resources

The study introduced two new C2H6-selective MOF adsorbents with high stability and selectivity, which can effectively separate ethylene from ethane even in high humidity conditions. The scalable synthesis method and potential industrial applications make them promising for practical use in industrial settings.
The development of new techniques and materials that can separate ethylene from ethane is highly relevant in modern applications. Although adsorption-based separation techniques using metal-organic frameworks (MOFs) have gained increasing attention, the relatively low stability (especially water resistance) and unscalable synthesis of MOFs severely limit their application in real industrial scenarios. Addressing these challenges, we rationally designed and synthesized two new C2H6-selective MOF adsorbents (NKMOF-8-Br and -Me) with ultrahigh chemical and thermal stability, including water resistance. Attributed to the nonpolar/hydrophobic pore environments and appropriate pore apertures, the MOFs can capture C-2 hydrocarbon gases at ambient conditions even in high humidity. The single-crystal structures of gas@NKMOF-8 realized the direct visualization of adsorption sites of the gases. Both the single-crystal data and simulated data elucidate the mechanism of selective adsorption. Moreover, the NKMOF-8 possesses high C2H6 adsorption capacity and high selectivity, allowing for efficient C2H6/C2H4 separation, as verified by experimental breakthrough tests. Most importantly, NKMOF-8-Br and -Me can be scalably synthesized through stirring at room temperature in minutes, which confers them with great potential for industrial application. This work offers new adsorbents that can address major chemical industrial challenges and provides an in-depth understanding of the gas binding sites in a visual manner.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available