4.8 Article

Simultaneously Tuning the Defects and Surface Properties of Ta3N5 Nanoparticles by Mg-Zr Codoping for Significantly Accelerated Photocatalytic H2 Evolution

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 143, Issue 27, Pages 10059-10064

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.1c04861

Keywords

-

Funding

  1. Artificial Photosynthesis Project of the New Energy and Industrial Technology Development Organization (NEDO)
  2. Nanotechnology Platform of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan

Ask authors/readers for more resources

This study demonstrates the synthesis of Ta3N5:Mg+Zr nanoparticles with significantly enhanced photocatalytic water reduction activity under visible light. A coherent picture of the relations between defect species, surface properties, charge carrier dynamics, and photocatalytic activities was drawn, highlighting the importance and feasibility of improving multiple properties of a catalytic material via a one-step strategy.
The simultaneous control of the defect species and surface properties of semiconducting materials is a crucial aspect of improving photocatalytic performance, yet it remains challenging. Here, we synthesized Mg-Zr-codoped single-crystalline Ta3N5 (Ta3N5:Mg+Zr) nanoparticles by a brief NH3 nitridation process, exhibiting photocatalytic water reduction activity 45 times greater than that of pristine Ta3N5 under visible light. A coherent picture of the relations between the defect species (comprising reduced Ta, nitrogen vacancies and oxygen impurities), surface properties (associated with dispersion of the Pt cocatalyst), charge carrier dynamics, and photocatalytic activities was drawn. The tuning of defects and simultaneous optimization of surface properties resulting from the codoping evidently resulted in the generation of high concentrations of long-lived electrons in this material as well as the efficient migration of these electrons to evenly distributed surface Pt sites. These effects greatly enhanced the photocatalytic activity. This work highlights the importance and feasibility of improving multiple properties of a catalytic material via a one-step strategy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available