4.5 Article

Deep learning-based stereophonic acoustic echo suppression without decorrelation

Journal

JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
Volume 150, Issue 2, Pages 816-829

Publisher

ACOUSTICAL SOC AMER AMER INST PHYSICS
DOI: 10.1121/10.0005757

Keywords

-

Ask authors/readers for more resources

This paper proposes a new method using convolutional recurrent network to suppress stereophonic echo by estimating a nonlinear gain, which avoids the potential issues of reducing audio quality and stereophonic spatial perception in traditional methods.
Traditional stereophonic acoustic echo cancellation algorithms need to estimate acoustic echo paths from stereo loudspeakers to a microphone, which often suffers from the nonuniqueness problem caused by a high correlation between the two far-end signals of these stereo loudspeakers. Many decorrelation methods have already been proposed to mitigate this problem. However, these methods may reduce the audio quality and/or stereophonic spatial perception. This paper proposes to use a convolutional recurrent network (CRN) to suppress the stereophonic echo components by estimating a nonlinear gain, which is then multiplied by the complex spectrum of the microphone signal to obtain the estimated near-end speech without a decorrelation procedure. The CRN includes an encoder-decoder module and two-layer gated recurrent network module, which can take advantage of the feature extraction capability of the convolutional neural networks and temporal modeling capability of recurrent neural networks simultaneously. The magnitude spectra of the two far-end signals are used as input features directly without any decorrelation preprocessing and, thus, both the audio quality and stereophonic spatial perception can be maintained. The experimental results in both the simulated and real acoustic environments show that the proposed algorithm outperforms traditional algorithms such as the normalized least-mean square and Wiener algorithms, especially in situations of low signal-to-echo ratio and high reverberation time RT60. (C) 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available