4.7 Article

Quantitative Proteomics Reveals the Protein Regulatory Network of Anabaena sp. PCC 7120 under Nitrogen Deficiency

Journal

JOURNAL OF PROTEOME RESEARCH
Volume 20, Issue 8, Pages 3963-3976

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jproteome.1c00302

Keywords

cyanobacteria; Anabaena sp. PCC7120; label freeproteome quantitation; nitrogen deficiency

Funding

  1. National Key Research and Development Program of China [2020YFA0907400]
  2. National Natural Science Foundation of China [31570829]
  3. Open Project Funding of the State Key Laboratory of Crop Stress Adaptation and Improvement
  4. Chinese Academy of Sciences [QYZDY-SSW-SMC004]
  5. CAS Key Technology Talent Program

Ask authors/readers for more resources

A label-free quantitative proteomic strategy was used to investigate the nitrogen deficiency response of Anabaena 7120, revealing significant changes in protein abundance at different time points. The study also uncovered proteomic perturbation and regulation of carbon and nitrogen metabolism under nitrogen deficiency, with time-specific dysregulated proteins involved in heterocyst development. These results provide novel insights into the molecular mechanisms of nitrogen stress responses and heterocyst development in Anabaena 7120.
Anabaena sp. PCC 7120 (Anabaena 7120) is a photoautotrophic filamentous cyanobacterium capable of fixing atmospheric nitrogen. It is a model organism used for studying cell differentiation and nitrogen fixation. Under nitrogen deficiency, Anabaena 7120 forms specialized heterocysts capable of nitrogen fixation. However, the molecular mechanisms involved in the cyanobacterial adaptation to nitrogen deficiency are not well understood. Here, we employed a label-free quantitative proteomic strategy to systematically investigate the nitrogen deficiency response of Anabaena 7120 at different time points. In total, 363, 603, and 669 proteins showed significant changes in protein abundance under nitrogen deficiency for 3, 12, and 24 h, respectively. With mapping onto metabolic pathways, we revealed proteomic perturbation and regulation of carbon and nitrogen metabolism in response to nitrogen deficiency. Functional analysis confirmed the involvement of nitrogen stress-responsive proteins in biological processes, including nitrogen fixation, photosynthesis, energy and carbon metabolism, and heterocyst development. The expression of 10 proteins at different time points was further validated by using multiple reaction monitoring assays. In particular, many dysregulated proteins were found to be time-specific and involved in heterocyst development, providing new candidates for future functional studies in this model cyanobacterium. These results provide novel insights into the molecular mechanisms of nitrogen stress responses and heterocyst development in Anabaena 7120.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available