4.6 Article

Cyclometalation Geometry of the Bridging Ligand as a Tuning Tool for Photophysics of Dinuclear Ir(III) Complexes

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 125, Issue 37, Pages 20531-20537

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.1c05037

Keywords

-

Funding

  1. German Research Foundation (DFG) [389797483]
  2. EPSRC [EP/S01280X/1]
  3. EPSRC [EP/S01280X/1] Funding Source: UKRI

Ask authors/readers for more resources

The study focuses on the effect of switching the cyclometalating function of bridging ligands on the photophysical properties of dinuclear Ir(III) complexes. It was found that the C/N swap within the bridging ligand led to a blue-shifted and improved efficiency of the phosphorescence of the new complex Ir-1, attributed to the significantly reduced exchange interaction in state T-1. This change is supported by density functional theory calculations showing a more even distribution of the highest occupied molecular orbital within the bridging ligand and increased participation of metal centers and halide atoms in the formation of states S-1 and T-1. Additionally, modulation of the substituent pattern on the bridging ligand in complex Ir-2 allowed for selective tuning of phosphorescence rate under similar conditions.
Bridging ligands play a crucial role in design of luminescent dinuclear metal complexes. Bis-cyclometalating ligands gave rise to a large family of highly efficient emitters. Herein, we investigate the effect of switching the cyclometalating function of the bridging (chromophoric) ligand on photophysical properties of dinuclear Ir(III) complexes. The new dinuclear Ir(III) complex (Ir-1), comprising a bridging chromophoric ligand with two terminal cyclometalating phenyl derivatives, conjugated to the central twice nitrogen-coordinating thiazolo[5,4-d]thiazole derivative, displays red phosphorescence of decent efficiency in CH2Cl2 solution at room temperature (Phi(PL) = 12%, tau = 1.5 mu s, and lambda = 635 nm). This is several times more efficient compared to the properties of the earlier reported dinuclear Ir(III) complex IrIr, with a bridging ligand comprising terminal nitrogen-coordinating pyridine derivatives and a central cyclometalating thieno[3,2-b]thiophene derivative, under the same conditions (Phi(PL) = 3.5%, tau = 2.9 mu s, and lambda = 714 nm). This C/N swap within the bridging ligand caused blue-shifted and improved efficiency of phosphorescence of Ir-1. The origin of this effect is the significantly reduced exchange interaction in state T-1 and, consequently, smaller Delta E(S-1 - T-1) energy gap. According to the density functional theory calculations, this comes from the more even (wider) distribution of the highest occupied molecular orbital within the bridging ligand and increased participation of the metal centers and halide atoms in the formation of states S-1 and T-1. Modulation of the substituent pattern on the bridging ligand in complex Ir-2, analogous to Ir-1, afforded selective tuning of the phosphorescence rate, whereas other properties of phosphorescence remained similar under the same conditions (Phi(PL) = 15%, tau = 3.1 mu s, and lambda = 632 nm).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available