4.7 Article

CD8-Targeted PET Imaging of Tumor-Infiltrating T Cells in Patients with Cancer: A Phase I First-in-Humans Study of 89Zr-Df-IAB22M2C, a Radiolabeled Anti-CD8 Minibody

Journal

JOURNAL OF NUCLEAR MEDICINE
Volume 63, Issue 5, Pages 720-726

Publisher

SOC NUCLEAR MEDICINE INC
DOI: 10.2967/jnumed.121.262485

Keywords

Zr-89-Df-IAB22M2C; PET imaging; CD8+T cell; minibody; immunotherapy

Funding

  1. ImaginAb, Inc.
  2. Parker Institute for Cancer Immunotherapy
  3. Radiochemistry & Molecular Imaging Probe Core of Memorial Sloan Kettering Cancer Center
  4. NIH/NCI Cancer Center [P30 CA008748]
  5. ImaginAb
  6. ImaginAb and Imaging Endpoints

Ask authors/readers for more resources

This study demonstrates that CD8 PET imaging with Zr-89-Df-IAB22M2C is a safe and effective method for visualizing the whole-body biodistribution of CD8+ leukocytes in tumors and reference tissues, and may predict early response to immunotherapy.
There is a need for in vivo diagnostic imaging probes that can noninvasively measure tumor-infiltrating CD8+ leukocytes. Such imaging probes could be used to predict early response to cancer immunotherapy, help select effective single or combination immunotherapies, and facilitate the development of new immunotherapies or immunotherapy combinations. This study was designed to optimize conditions for performing CD8 PET imaging with Zr-89-Df-IAB22M2C and determine whether CD8 PET imaging could provide a safe and effective noninvasive method of visualizing the whole-body biodistribution of CD8+ leukocytes. Methods: We conducted a phase 1 first-in humans PET imaging study using an anti-CD8 radiolabeled minibody, Zr-89-Df-IAB22M2C, to detect whole-body and tumor CD8+ leukocyte distribution in patients with metastatic solid tumors. Patients received 111 MBq of Zr-89-Df-IAB22M2C followed by serial PET scanning over 5-7 d. A 2-stage design included a dose-escalation phase and a dose-expansion phase. Biodistribution, radiation dosimetry, and semiquantitative evaluation of Zr-89-Df-IAB22M2C uptake were performed in all patients. Results: Fifteen subjects with metastatic melanoma, non-small cell lung cancer, and hepatocellular carcinoma were enrolled. No drug-related adverse events or abnormal laboratory results were noted except for a transient increase in antidrug antibodies in 1 subject. Zr-89-Df-IAB22M2C accumulated in tumors and CD8rich tissues (e.g., spleen, bone marrow, nodes), with maximum uptake at 24-48 h after injection and low background activity in CD8-poor tissues (e.g., muscle and lung). Radiotracer uptake in tumors was noted in 10 of 15 subjects, including 7 of 8 subjects on immunotherapy, 1 of 2 subjects on targeted therapy, and 2 of 5 treatment-naive subjects. In 3 patients with advanced melanoma or hepatocellular carcinoma on immunotherapy, posttreatment CD8 PET/CT scans demonstrated increased 89Zr-Df-IAB22M2C uptake in tumor lesions, which correlated with response. Conclusion: CD8 PET imaging with Zr-89-Df-IAB22M2C is safe and has the potential to visualize the whole-body biodistribution of CD8+ leukocytes in tumors and reference tissues, and may predict early response to immunotherapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available