4.4 Review

Neurophysiology of slip sensation and grip reaction: insights for hand prosthesis control of slippage

Journal

JOURNAL OF NEUROPHYSIOLOGY
Volume 126, Issue 2, Pages 477-492

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00087.2021

Keywords

physiology of slippage; reflexes; sensorimotor control loop; touch; upper limb prostheses

Funding

  1. European Research Council (ERC) [678908, 687905]
  2. Italian Ministry of Education, University and Research [R16ZBLF9E3]
  3. INAIL [CUP: PEN0134]
  4. European Research Council (ERC) [678908] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

Sensory feedback is crucial for hand dexterity, particularly in preventing slippage of grabbed objects. Current hand prosthetics are still far from replicating human physiology in controlling slippage efficiently. By proposing a three-phase model for slip sensation and reaction based on physiological correlates, and suggesting physiology-inspired solutions, there is potential to improve slip control in future prostheses.
Sensory feedback is pivotal for a proficient dexterity of the hand. By modulating the grip force in function of the quick and not completely predictable change of the load force, grabbed objects are prevented to slip from the hand. Slippage control is an enabling achievement to all manipulation abilities. However, in hand prosthetics, the performance of even the most innovative research solutions proposed so far to control slippage remain distant from the human physiology. Indeed, slippage control involves parallel and compensatory activation of multiple mechanoceptors, spinal and supraspinal reflexes, and higher-order voluntary behavioral adjustments. In this work, we reviewed the literature on physiological correlates of slippage to propose a three-phases model for the slip sensation and reaction. Furthermore, we discuss the main strategies employed so far in the research studies that tried to restore slippage control in amputees. In the light of the proposed three-phase slippage model and from the weaknesses of already implemented solutions, we proposed several physiology-inspired solutions for slippage control to be implemented in the future hand prostheses. Understanding the physiological basis of slip detection and perception and implementing them in novel hand feedback system would make prosthesis manipulation more efficient and would boost its perceived naturalness, fostering the sense of agency for the hand movements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available