4.6 Article

Modeling and augmenting of fMRI data using deep recurrent variational auto-encoder

Journal

JOURNAL OF NEURAL ENGINEERING
Volume 18, Issue 4, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/1741-2552/ac1179

Keywords

fMRI modeling; data augmentation; functional brain network; variational auto-encoder; recurrent neural network

Funding

  1. national key R&D program of China [2017YFE0130600]
  2. Fundamental Research Founds for the Central Universities [GK201803023, GK202003016]
  3. National Natural Science Foundation of China [61976131, 61703256, 61872007, 62073133]
  4. Beijing Natural Science Foundation [Z201100008320002]

Ask authors/readers for more resources

The proposed method, a deep recurrent variational auto-encoder (DRVAE) combining variational auto-encoder and recurrent neural network, addresses challenges in fMRI modeling. Experimental results show that the approach can learn meaningful temporal patterns and spatial networks, and significantly improve classification performance through data augmentation.
Objective. Recently, deep learning models have been successfully applied in functional magnetic resonance imaging (fMRI) modeling and associated applications. However, there still exist at least two challenges. Firstly, due to the lack of sufficient data, deep learning models tend to suffer from overfitting in the training process. Secondly, it is still challenging to model the temporal dynamics from fMRI, due to that the brain state is continuously changing over scan time. In addition, existing methods rarely studied and applied fMRI data augmentation. Approach. In this work, we construct a deep recurrent variational auto-encoder (DRVAE) that combined variational auto-encoder and recurrent neural network, aiming to address all of the above mentioned challenges. The encoder of DRVAE can extract more generalized temporal features from assumed Gaussian distribution of input data, and the decoder of DRVAE can generate new data to increase training samples and thus partially relieve the overfitting issue. The recurrent layers in DRVAE are designed to effectively model the temporal dynamics of functional brain activities. LASSO (least absolute shrinkage and selection operator) regression is applied on the temporal features and input fMRI data to estimate the corresponding spatial networks. Main results. Extensive experimental results on seven tasks from HCP dataset showed that the DRVAE and LASSO framework can learn meaningful temporal patterns and spatial networks from both real data and generated data. The results on group-wise data and single subject suggest that the brain activities may follow certain distribution. Moreover, we applied DRVAE on four resting state fMRI datasets from ADHD-200 for data augmentation, and the results showed that the classification performances on augmented datasets have been considerably improved. Significance. The proposed method can not only derive meaningful temporal features and spatial networks from fMRI, but also generate high-quality new data for fMRI data augmentation and associated applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available