4.7 Article

ERF1 delays flowering through direct inhibition of FLOWERING LOCUS T expression in Arabidopsis

Journal

JOURNAL OF INTEGRATIVE PLANT BIOLOGY
Volume 63, Issue 10, Pages 1712-1723

Publisher

WILEY
DOI: 10.1111/jipb.13144

Keywords

Arabidopsis thaliana; ethylene; ETHYLENE RESPONSE FACTOR1; floral initiation; FLOWERING LOCUS T

Funding

  1. Yunnan Fundamental Research Projects [2019FA010, 2019FB029]
  2. Chinese Academy of Sciences [XDA24030301]

Ask authors/readers for more resources

ERF1 plays a crucial role in floral initiation in Arabidopsis by regulating the transcription of the FT gene, acting as a negative modulator of flowering-time control in the ethylene signaling pathway.
ETHYLENE RESPONSE FACTOR1 (ERF1) is a key component in ethylene signaling, playing crucial roles in both biotic and abiotic stress responses. Here, we demonstrate that ERF1 also has an important role during floral initiation in Arabidopsis thaliana. Knockdown or knockout of ERF1 accelerated floral initiation, whereas overexpression of ERF1 dramatically delayed floral transition. These contrasting phenotypes were correlated with opposite transcript levels of FLOWERING LOCUS T (FT). Chromatin immunoprecipitation (ChIP) assays revealed that ERF1 associates with genomic regions of the FT gene to repress its transcription. ft-10/ERF1RNAi plants showed a similar flowering phenotype to the ft-10 mutant, whereas the flowering of FTox/ERF1ox mimicked that of FTox plants, suggesting that ERF1 acts upstream of FT during floral initiation. Similarly, altered floral transition in ethylene-related mutants was also correlated with FT expression. Further analysis suggested that ERF1 also participates in delay in flowering-time control mediated by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. Thus, ERF1 may act as a negative modulator of flowering-time control by repressing FT transcription in Arabidopsis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available