4.7 Article

Fabrication of chitosan-aminopropylsilane graphene oxide nanocomposite hydrogel embedded PES membrane for improved filtration performance and lead separation

Journal

JOURNAL OF ENVIRONMENTAL MANAGEMENT
Volume 294, Issue -, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2021.112918

Keywords

Nanofiltration membrane; Nanocomposite hydrogel; Heavy metal removal; Dye wastewater; Antifouling

Funding

  1. Semnan University (Semnan, Iran)
  2. Kharazmi University (Tehran, Iran)

Ask authors/readers for more resources

In this study, a CS-APSGO nanocomposite hydrogel was synthesized and utilized to modify PES membranes, resulting in membranes with improved filtration performance. The CS-APSGO embedded membranes showed excellent antifouling properties and high flux during filtration tests.
In the present study chitosan-aminopropylsilane graphene oxide (CS-APSGO) nanocomposite hydrogel was synthesized and utilized as a hydrophilic additive in different dosages (0.5, 1, 2 and 5 wt%) in fabrication of porous polyethersulfone (PES) membranes via the phase inversion induced process by immersion precipitation method for heavy metal ion and dye removal. The modified membranes were characterized using ATR-FTIR, AFM, SEM, water contact angle, overall porosity and mean pore radius evaluations and zeta potential measurement. The addition of CS-APSGO nanocomposite hydrogel to PES doping solutions enhanced membranes hydrophilicity and consequently pure water flux permeability. Filtration performance of the CS-APSGO embedded membranes showed promising antifouling properties during BSA filtration test (FRR> 90%) and 1 wt% membranes showed the highest pure water flux of 123.8 L/m2 h with BSA rejection more than 98% and removal capability more than 82% for lead (II) ion, 90.5% and 98.5% for C.I. Reactive Blue 50 and C.I. Reactive Green 19, respectively. Therefore, the CS-APSGO nanocomposite hydrogel blending in order to modification of PES-based membranes have a noticeable potential in improving filtration performance of blended membranes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available