4.3 Article

Surge Prevention Techniques for a Turbocharged Solid Oxide Fuel Cell Hybrid System

Publisher

ASME
DOI: 10.1115/1.4052092

Keywords

-

Ask authors/readers for more resources

Pressurized solid oxide fuel cell (SOFC) systems, integrated with either microgas turbines or automotive turbochargers, are promising for high energy conversion efficiencies, but face challenges such as control of rotational speed and dynamic behavior. Strategies to mitigate these challenges are crucial for system reliability and performance.
Pressurized solid oxide fuel cell (SOFC) systems are one of the most promising technologies to achieve high energy conversion efficiencies and reduce pollutant emissions. The most common solution for pressurization is the integration with a microgas turbine, a device capable of exploiting the residual energy of the exhaust gas to compress the fuel cell air intake and, at the same time, generating additional electrical power. The focus of this study is on an alternative layout, based on an automotive turbocharger, which has been more recently considered by the research community to improve cost effectiveness at a small size (<100 kW), despite reducing slightly the top achievable performance. Such a turbocharged SOFC system poses two main challenges. On one side, the absence of an electrical generator does not allow direct control of the rotational speed, which is determined by the power balance between turbine and compressor. On the other side, the presence of a large volume between compressor and turbine, due to the fuel cell stack, alters the dynamic behavior of the turbocharger during transients, increasing the risk of compressor surge. The pressure oscillations associated with such event are particularly detrimental for the system because they could easily damage the materials of the fuel cells. This paper aims is to investigate different techniques to drive the operative point of the compressor far from the surge condition when needed, reducing the risks related to transients and increasing its reliability. By means of a system dynamic model, developed using the transeo simulation tool by Thermochemical Power Group (TPG), the effect of different antisurge solutions is simulated: (i) intake air conditioning, (ii) water spray at compressor inlet, (iii) air bleed and recirculation, and (iv) installation of an ejector at the compressor intake. The pressurized fuel cell system is simulated with two different control strategies, i.e., constant fuel mass flow and constant turbine inlet temperature. Different solutions are evaluated based on surge margin behavior, both in the short and long terms, but also monitoring other relevant physical quantities of the system, such as compressor pressure ratio and turbocharger rotational speed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available