4.6 Article

The large scale polarization explorer (LSPE) for CMB measurements: performance forecast

Journal

Publisher

IOP Publishing Ltd
DOI: 10.1088/1475-7516/2021/08/008

Keywords

CMBR experiments; CMBR polarisation; cosmological parameters from CMBR

Funding

  1. ASI [LSPE I/022/11/0]
  2. INFN
  3. COSMOS network through the ASI (Italian Space Agency) [2016-24H.0, 2016-24-H.1-2018]
  4. Sapienza University
  5. Spanish Ministry of Science and Innovation (MICINN) [AYA2017-84185-P]
  6. European Union [687312]

Ask authors/readers for more resources

Measuring the polarization of the Cosmic Microwave Background is a significant aspect of current cosmological research, with LSPE being a program dedicated to this task. LSPE consists of two instruments, LSPE-Strip and LSPE-SWIPE, working together to detect the B-mode polarization component and potentially reveal the presence of gravitational waves from the early Universe. LSPE is expected to provide valuable insights into the inflationary theory and improve constraints on cosmological parameters.
The measurement of the polarization of the Cosmic Microwave Background (CMB) radiation is one of the current frontiers in cosmology. In particular, the detection of the primordial divergence-free component of the polarization field, the B-mode, could reveal the presence of gravitational waves in the early Universe. The detection of such a component is at the moment the most promising technique to probe the inflationary theory describing the very early evolution of the Universe. We present the updated performance forecast of the Large Scale Polarization Explorer (LSPE), a program dedicated to the measurement of the CMB polarization. LSPE is composed of two instruments: LSPE-Strip, a radiometer-based telescope on the ground in Tenerife-Teide observatory, and LSPE-SWIPE (Short-Wavelength Instrument for the Polarization Explorer) a bolometer-based instrument designed to fly on a winter arctic stratospheric long-duration balloon. The program is among the few dedicated to observation of the Northern Hemisphere, while most of the international effort is focused into ground-based observation in the Southern Hemisphere. Measurements are currently scheduled in Winter 2022/23 for LSPE-SWIPE, with a flight duration up to 15 days, and in Summer 2022 with two years observations for LSPE-Strip. We describe the main features of the two instruments, identifying the most critical aspects of the design, in terms of impact on the performance forecast. We estimate the expected sensitivity of each instrument and propagate their combined observing power to the sensitivity to cosmological parameters, including the effect of scanning strategy, component separation, residual foregrounds and partial sky coverage. We also set requirements on the control of the most critical systematic effects and describe techniques to mitigate their impact. LSPE will reach a sensitivity in tensor-to-scalar ratio of sigma(r) < 0.01, set an upper limit r < 0.015 at 95% confidence level, and improve constraints on other cosmological parameters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available