4.7 Article

Immersed boundary method for high-order flux reconstruction based on volume penalization

Journal

JOURNAL OF COMPUTATIONAL PHYSICS
Volume 448, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2021.110721

Keywords

Volume penalization; Flux reconstruction; Immersed boundary method; High-order method; Moving boundary

Funding

  1. European Union [813605]
  2. Marie Curie Actions (MSCA) [813605] Funding Source: Marie Curie Actions (MSCA)

Ask authors/readers for more resources

In this work, the numerical advantages of the high-order Flux Reconstruction (FR) method and the simplicity of the mesh generation of the Immersed Boundary Method (IBM) are combined for steady and unsteady problems over moving geometries using the volume penalization (penalty-IBM) method. The efficiency of the approach in handling moving geometries is demonstrated through various numerical test cases, showcasing the potential of this method in industrial design processes.
In the last decade, there has been a lot of interest in developing high-order methods as a viable option for unsteady scale-resolving-simulations which are increasingly important in the industrial design process. High-order methods offer the advantages of low numerical dissipation, high efficiency on modern architectures and quasi mesh-independence. Despite significant advance in high-order solution methods, the general CFD workflow (geometry, CAD preparation, meshing, solution, post-processing) has largely remained unchanged, with mesh generation being a significant bottleneck and often determining the overall quality of the solution. In this work, we aim to combine the numerical advantages of the high -order Flux Reconstruction (FR) method and the simplicity of the mesh generation (or lack thereof) of the Immersed Boundary Method (IBM) for steady and unsteady problems over moving geometries. The volume penalization (penalty-IBM) method is selected for its ease of implementation and robustness. Detailed discussions about numerical implementation, including the boundary representation, mask function, data reconstruction, and selection of the penalization parameter are given. Advantages of combining volume penalization in the high-order framework are shown by various numerical test cases. The approach is firstly demonstrated for the linear advection-diffusion equation by investigating the numerical convergence for the coupled FR-IBM approach. Thereafter, the accuracy of the approach is demonstrated for canonical (static) test cases in 2D and 3D when compared to a standard body-fitted unstructured simulation. Finally, the efficiency of the method to handle moving geometries is demonstrated for the flow around an airfoil with pitching and plunging motions. (c) 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available