4.7 Article

Multi-fidelity Bayesian neural networks: Algorithms and applications

Journal

JOURNAL OF COMPUTATIONAL PHYSICS
Volume 438, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2021.110361

Keywords

Nonlinear correlation; Physics-informed neural networks; Hamiltonian Monte Carlo; Uncertainty quantification; Active learning; Satellite data

Ask authors/readers for more resources

A novel class of Bayesian neural networks is proposed for training with noisy data of variable fidelity, applied to function approximations and solving inverse problems based on partial differential equations (PDEs). The multi-fidelity BNNs consist of three neural networks, effectively modeling the correlation and uncertainty between different fidelity data and accurately estimating posterior distributions of hyperparameters. The method demonstrates adaptively capturing linear and nonlinear correlation, identifying unknown parameters in PDEs, and quantifying uncertainties in predictions, ultimately enhancing prediction accuracy through active learning.
We propose a new class of Bayesian neural networks (BNNs) that can be trained using noisy data of variable fidelity, and we apply them to learn function approximations as well as to solve inverse problems based on partial differential equations (PDEs). These multi-fidelity BNNs consist of three neural networks: The first is a fully connected neural network, which is trained following the maximum a posteriori probability (MAP) method to fit the low-fidelity data; the second is a Bayesian neural network employed to capture the cross-correlation with uncertainty quantification between the low- and high-fidelity data; and the last one is the physics-informed neural network, which encodes the physical laws described by PDEs. For the training of the last two neural networks, we first employ the mean-field variational inference (VI) to maximize the evidence lower bound (ELBO) to obtain informative prior distributions for the hyperparameters in the BNNs, and subsequently we use the Hamiltonian Monte Carlo (HMC) method to estimate accurately the posterior distributions for the corresponding hyperparameters. We demonstrate the accuracy of the present method using synthetic data as well as real measurements. Specifically, we first approximate a one- and four-dimensional function, and then infer the reaction rates in one- and two-dimensional diffusion-reaction systems. Moreover, we infer the sea surface temperature (SST) in the Massachusetts and Cape Cod Bays using satellite images and in-situ measurements. Taken together, our results demonstrate that the present method can capture both linear and nonlinear correlation between the low- and high-fidelity data adaptively, identify unknown parameters in PDEs, and quantify uncertainties in predictions, given a few scattered noisy high-fidelity data. Finally, we demonstrate that we can effectively and efficiently reduce the uncertainties and hence enhance the prediction accuracy with an active learning approach, using as examples a specific one-dimensional function approximation and an inverse PDE problem. (C) 2021 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available