4.7 Article

Zinc sulfide quantum dots/zinc oxide nanospheres/bismuth-enriched bismuth oxyiodides as Z-scheme/type-II tandem heterojunctions for an efficient charge separation and boost solar-driven photocatalytic performance

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 592, Issue -, Pages 259-270

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2021.02.051

Keywords

Photocatalysis; Z-scheme; ZnS; Core-shell structure; Tandem heterojunction

Funding

  1. National Natural Science Foundation of China [21871078, 51672073]
  2. Natural Science Foundation of Heilongjiang Province [JQ2019B001, B2018010]
  3. Heilongjiang Postdoctoral Startup Fund [LBHQ14135]
  4. Heilongjiang University Science Fund for Distinguished Young Scholars [JCL201802]
  5. Heilongjiang Provincial Institutions of Higher Learning Basic Research Funds Basic Research Projects [KJCX201909]
  6. Postgraduate Innovative Science Research Project of Heilongjiang University [YJSCX2020184HLJU]
  7. Young Innovative Team Supporting Projects of Heilongjiang Province
  8. Heilongjiang Touyan Innovation Team Program

Ask authors/readers for more resources

A novel ZnO@Bi4O5I2/ZnS composite photocatalyst was successfully fabricated using specific preparation methods, demonstrating high photocatalytic hydrogen evolution and organic wastewater degradation performance.
A novel zinc sulfide quantum dot (ZnS QD)/zinc oxide (ZnO) nanosphere/bismuth-enriched bismuth oxyiodide (Bi4O5I2) tandem heterojunction photocatalyst is fabricated through two-step solvothermal, calcination and one-step hydrothermal strategies. The successfully constructed core-shell nanostructure can increase the interface area and the active sites of the composite photocatalysts. The formation of a Zscheme/Type-II tandem heterojunction favors the transfer and spatial separation of charge carriers, in which Bi4O5I2 plays a bridging role to connect ZnO and ZnS. Simultaneously, the participation of Bi4O5I2 significantly shortens the band gap of the composite photocatalyst. This dual functional ZnO@Bi4O5I2/ZnS composite photocatalyst has a high photocatalytic hydrogen evolution rate of 578.4 mmol g-1h-1 and an excellent photocatalytic degradation efficiency for bisphenol A (BPA) and 2,4,5-trichlorophenol (TCP). In addition, cycling tests show that ZnO@Bi4O5I2/ZnS has a high stability, which is favorable for practical applications. This novel ZnO@Bi4O5I2/ZnS Z-scheme/Type-II tandem heterojunction photocatalyst will provide new ideas for the multichannel charge transfer of other highly efficient heterojunction photocatalysts. (c) 2021 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available