4.7 Article

Influence of solution phase environmental heterogeneity and fluctuations on vibronic spectra: Perylene diimide molecular chromophore complexes in solution

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 154, Issue 22, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0054377

Keywords

-

Funding

  1. U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0020437]
  2. National Science Foundation [CHE-1955407]
  3. U.S. Department of Energy (DOE) [DE-SC0020437] Funding Source: U.S. Department of Energy (DOE)

Ask authors/readers for more resources

Ensembles of parameterized Frenkel-exciton model Hamiltonians were used to study vibronic spectra of different perylene diimide dimer systems, revealing accurate reproduction of experimental absorption spectra and providing detailed insights into how structural fluctuations and environmental interactions influence the vibronic dynamics and spectroscopy of multi-chromophore complexes in solution.
Ensembles of ab initio parameterized Frenkel-exciton model Hamiltonians for different perylene diimide dimer systems are used, together with various dissipative quantum dynamics approaches, to study the influence of the solvation environment and fluctuations in chromophore relative orientation and packing on the vibronic spectra of two different dimer systems: a pi -stacked dimer in aqueous solution in which the relative chromophore geometry is strongly confined by a phosphate bridge and a side-by-side dimer in dichloromethane involving a more flexible alkyne bridge that allows quasi-free rotation of the chromophores relative to one another. These entirely first-principles calculations are found to accurately reproduce the main features of the experimental absorption spectra, providing a detailed mechanistic understanding of how the structural fluctuations and environmental interactions influence the vibronic dynamics and spectroscopy of solutions of these multi-chromophore complexes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available