4.5 Article

LncRNA PAXIP1-AS1 fosters the pathogenesis of pulmonary arterial hypertension via ETS1/WIPF1/RhoA axis

Journal

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE
Volume 25, Issue 15, Pages 7321-7334

Publisher

WILEY
DOI: 10.1111/jcmm.16761

Keywords

ETS1; PAXIP1-AS1; Pulmonary arterial hypertension; RhoA; WIPF1

Funding

  1. National Clinical Key Specialist Construction Project

Ask authors/readers for more resources

The study found that lncRNA PAXIP1-AS1 promotes cell viability and migration of hPASMCs through ETS1/WIPF1/RhoA, potentially providing a therapeutic target for PAH treatment.
Pulmonary arterial hypertension (PAH) is a life-threatening disease featured with elevated pulmonary vascular resistance and progressive pulmonary vascular remodelling. It has been demonstrated that lncRNA PAXIP1-AS1 could influence the transcriptome in PAH. However, the exact molecular mechanism of PAXIP1-AS1 in PAH pathogenesis remains largely unknown. In this study, in vivo rat PAH model was established by monocrotaline (MCT) induction and hypoxia was used to induce in vitro PAH model using human pulmonary artery smooth muscle cells (hPASMCs). Histological examinations including H&E, Masson's trichrome staining and immunohistochemistry were subjected to evaluate the pathological changes of lung tissues. Expression patterns of PAXIP1-AS1 and RhoA were assessed using qRT-PCR and Western blotting, respectively. CCK-8, BrdU assay and immunofluorescence of Ki67 were performed to measure the cell proliferation. Wound healing and transwell assays were employed to evaluate the capacity of cell migration. Dual-luciferase reporter assay, co-immunoprecipitation, RIP and CHIP assays were employed to verify the PAXIP1-AS1/ETS1/WIPF1/RhoA regulatory network. It was found that the expression of PAXIP1-AS1 and RhoA was remarkably higher in both lung tissues and serum of MCT-induced PAH rats, as well as in hypoxia-induced hPASMCs. PAXIP1-AS1 knockdown remarkably suppressed hypoxia-induced cell viability and migration of hPASMCs. PAXIP1-AS1 positively regulated WIPF1 via recruiting transcriptional factor ETS1, of which knockdown reversed PAXIP1-AS1-mediated biological functions. Co-immunoprecipitation validated the WIPF1/RhoA interaction. In vivo experiments further revealed the role of PAXIP1-AS1 in PAH pathogenesis. In summary, lncRNA PAXIP1-AS1 promoted cell viability and migration of hPASMCs via ETS1/WIPF1/RhoA, which might provide a potential therapeutic target for PAH treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available