4.5 Article

The longitudinal relationship between shoulder pain and altered wheelchair propulsion biomechanics of manual wheelchair users

Journal

JOURNAL OF BIOMECHANICS
Volume 126, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2021.110626

Keywords

Wheelchair users; Manual wheelchair propulsion; Upper-body kinematics; Movement variability

Funding

  1. Peter Harrison Foundation
  2. School of Sport, Exercise and Health Sciences at Loughborough University

Ask authors/readers for more resources

The study found that as shoulder pain increased, manual wheelchair users exhibited various changes in wheelchair propulsion biomechanics, including contact angle, thorax range of motion, and kinetic and kinematic variability. These changes indicate that wheelchair users show a protective short-term wheelchair propulsion biomechanical response to increases in shoulder pain, which may temporarily help maintain functional independence.
The purpose of this study was to investigate the longitudinal association between within-subject changes in shoulder pain and alterations in wheelchair propulsion biomechanics in manual wheelchair users. Eighteen (age 33 +/- 11 years) manual wheelchair users propelled their own daily living wheelchair at 1.11 m.s(-1) for three minutes on a dual-roller ergometer during two laboratory visits (T1 and T2) between 4 and 6 months apart. Shoulder pain was assessed using the Performance Corrected Wheelchair User's Shoulder Pain Index (PCWUSPI). Between visits mean PC-WUSPI scores increased by 5.4 points and varied from - 13.5 to + 20.9 points. Of the eighteen participants, nine (50%) experienced increased shoulder pain, seven (39%) no change in pain, and two (11%) decreased pain. Increasing shoulder pain severity correlated with increased contact angle (r = 0.59, P = 0.010), thorax range of motion (r = 0.60, P = 0.009) and kinetic and kinematic variability. Additionally, increasing shoulder pain was associated with reductions in peak torque (r = -0.56, P = 0.016), peak glenohumeral abduction (r = -0.69, P = 0.002), peak scapular downward rotation (r = -0.68, P = 0.002), and range of motion in glenohumeral flexion/extension and scapular angles. Group comparisons revealed that these biomechanical alterations were exhibited by individuals who experienced increased shoulder pain, whereas, propulsion biomechanics of those with no change/decreased pain remained unaltered. These findings indicate that wheelchair users exhibit a protective short-term wheelchair propulsion biomechanical response to increases in shoulder pain which may temporarily help maintain functional independence.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available