4.6 Article

Radiative MHD hybrid-nanofluids flow over a permeable stretching surface with heat source/sink embedded in porous medium

Journal

Publisher

EMERALD GROUP PUBLISHING LTD
DOI: 10.1108/HFF-11-2020-0694

Keywords

Porous media; Nanofluids; Thermal radiation; MHD; Heat Source/Sink; Stretching Sheet

Ask authors/readers for more resources

This study investigates the heat transfer properties of three different radiative hybrid nanofluids flowing over a stretching surface, showing the effects of various parameters on heat transfer and suggesting potential applications in biomedical, microelectronics, thin-film stretching, lubrication, and refrigeration industries.
Purpose - The purpose of this paper is to study the comparative analysis between three hybrid nanofluids flow past a permeable stretching surface in a porous medium with thermal radiation. Uniform magnetic field is applied together with heat source and sink. Three set of different hybrid nanofluids with water as a base fluid having suspension of Copper- Aluminum Oxide (Cu - Al2O3), Silver-Aluminum Oxide (Ag - Al2O3) and Copper- Silver (Cu - Ag) nanoparticles are considered. The Marangoni boundary condition is applied. Design/methodology/approach - The governing model of the flow is solved by Runga-Kutta fourthorder method with shooting technique, using appropriate similarity transformations. Temperature and velocity field are explained by the figures for many flow pertinent parameters. Findings - Almost same behavior is observed for all the parameters presented in this analysis for the three set of hybrid nanofluids. For increased mass transfer wall parameter (f(w)) and Prandtl Number (Pr), heat transfer rate cuts down for all three sets of hybrid nanofluids, and reverse effect is seen for radiation parameter (R), and heat source/sink parameter (delta). Practical implications - The thermal conductivity of hybrid nanofluids is much larger than the conventional fluids; thus, heat transfer efficiency can be improved with these fluids and its implications can be seen in the fields of biomedical, microelectronics, thin-film stretching, lubrication, refrigeration, etc. Originality/value - The current analysis is to optimize heat transfer of three different radiative hybrid nanofluids (Cu - Al2O3/H2O,Ag - Al2O3/H2O and Cu - Ag/H2O) over stretching surface after applying heat source/sink with Marangoni convection. To the best of the authors' knowledge, this work is new and never published before.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available