4.4 Article

Delay-dependent robust stability analysis of uncertain fractional-order neutral systems with distributed delays and nonlinear perturbations subject to input saturation

Publisher

WALTER DE GRUYTER GMBH
DOI: 10.1515/ijnsns-2020-0170

Keywords

distributed delay; fractional order system; input saturation; neutral-type delay; robust stability

Ask authors/readers for more resources

In this article, the delay-dependent robust stability of uncertain fractional order neutral-type systems with distributed delays, nonlinear perturbations, and input saturation is addressed. Using the Lyapunov-Krasovskii functional, criteria on asymptotic robust stability of the systems, expressed in terms of linear matrix inequalities, are constructed to compute the state-feedback controller gains. The controller gains are determined through the cone complementarity linearization algorithm to maximize the domain of attraction. Numerical simulations are conducted to validate the theoretical results.
In this article, we address the delay-dependent robust stability of uncertain fractional order neutral-type (FONT) systems with distributed delays, nonlinear perturbations, and input saturation. With the aid of the Lyapunov-Krasovskii functional, criteria on asymptotic robust stability of FONT, expressed in terms of linear matrix inequalities, are constructed to compute the state-feedback controller gains. The controller gains are determined subject to maximizing the domain of attraction via the cone complementarity linearization algorithm. The theoretical results are validated using numerical simulations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available