4.7 Article

Gain-of-Function Mutant TP53 R248Q Overexpressed in Epithelial Ovarian Carcinoma Alters AKT-Dependent Regulation of Intercellular Trafficking in Responses to EGFR/MDM2 Inhibitor

Journal

Publisher

MDPI
DOI: 10.3390/ijms22168784

Keywords

p53(R248Q) overexpression; epidermal growth factor receptor (EGFR); AKT; mouse double minute 2 homolog (MDM2); combination therapy

Funding

  1. Hsinchu MacKay Memorial Hospital [MMHTH-10807]

Ask authors/readers for more resources

This study investigated the impact of gain-of-function p53 mutation (p53(R248Q)) overexpression on EGFR-related signaling and drug inhibition outcomes in HGSOC. Results showed that R248Q mutation caused changes in signaling protein function and trafficking, leading to differential sensitivity to EGFR/MDM2-targeted inhibition in HGSOC cells. Such findings could enhance our understanding of mutant p53's role in ovarian carcinoma and optimize the prognosis of patients receiving EGFR/MDM2-targeted therapies.
As the most common gene mutation found in cancers, p53 mutations are detected in up to 96% of high-grade serous ovarian carcinoma (HGSOC). Meanwhile, mutant p53 overexpression is known to drive oncogenic phenotypes in cancer patients and to sustain the activation of EGFR signaling. Previously, we have demonstrated that the combined inhibition of EGFR and MDM2-p53 pathways, by gefitinib and JNJ-26854165, exerts a strong synergistic lethal effect on HGSOC cells. In this study, we investigated whether the gain-of-function p53 mutation (p53(R248Q)) overexpression could affect EGFR-related signaling and the corresponding drug inhibition outcome in HGSOC. The targeted inhibition responses of gefitinib and JNJ-26854165, in p53(R248Q)-overexpressing cells, were extensively evaluated. We found that the phosphorylation of AKT increased when p53(R248Q) was transiently overexpressed. Immunocytochemistry analysis further showed that upon p53(R248Q) overexpression, several AKT-related regulatory proteins translocated in unique intracellular patterns. Subsequent analysis revealed that, under the combined inhibition of gefitinib and JNJ-26854165, the cytonuclear trafficking of EGFR and MDM2 was disrupted. Next, we analyzed the gefitinib and JNJ-26854165 responses and found differential sensitivity to the single- or combined-drug inhibitions in p53(R248Q)-overexpressing cells. Our findings suggested that the R248Q mutation of p53 in HGSOC caused significant changes in signaling protein function and trafficking, under EGFR/MDM2-targeted inhibition. Such knowledge could help to advance our understanding of the role of mutant p53 in ovarian carcinoma and to improve the prognosis of patients receiving EGFR/MDM2-targeted therapies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available