4.7 Article

Brain Protein Expression Profile Confirms the Protective Effect of the ACTH(4-7)PGP Peptide (Semax) in a Rat Model of Cerebral Ischemia-Reperfusion

Journal

Publisher

MDPI
DOI: 10.3390/ijms22126179

Keywords

ACTH((4-7))PGP (Semax); ischemic stroke; tMCAO; gene and protein expression profile; immunodetection; real-time RT-PCR; spreading depression

Funding

  1. Russian Science Foundation (RSF) [19-14-00268]
  2. Russian Science Foundation [19-14-00268] Funding Source: Russian Science Foundation

Ask authors/readers for more resources

Research suggests that Semax might exert neuroprotective effects by suppressing inflammation and cell death processes while activating recovery processes at both the transcriptome and protein levels.
The Semax (Met-Glu-His-Phe-Pro-Gly-Pro) peptide is a synthetic melanocortin derivative that is used in the treatment of ischemic stroke. Previously, studies of the molecular mechanisms underlying the actions of Semax using models of cerebral ischemia in rats showed that the peptide enhanced the transcription of neurotrophins and their receptors and modulated the expression of genes involved in the immune response. A genome-wide RNA-Seq analysis revealed that, in the rat transient middle cerebral artery occlusion (tMCAO) model, Semax suppressed the expression of inflammatory genes and activated the expression of neurotransmitter genes. Here, we aimed to evaluate the effect of Semax in this model via the brain expression profiling of key proteins involved in inflammation and cell death processes (MMP-9, c-Fos, and JNK), as well as neuroprotection and recovery (CREB) in stroke. At 24 h after tMCAO, we observed the upregulation of active CREB in subcortical structures, including the focus of the ischemic damage; downregulation of MMP-9 and c-Fos in the adjacent frontoparietal cortex; and downregulation of active JNK in both tissues under the action of Semax. Moreover, a regulatory network was constructed. In conclusion, the suppression of inflammatory and cell death processes and the activation of recovery may contribute to the neuroprotective action of Semax at both the transcriptome and protein levels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available