4.7 Article

Quercetin Protects Human Thyroid Cells against Cadmium Toxicity

Journal

Publisher

MDPI
DOI: 10.3390/ijms22136849

Keywords

endocrine disruptors; normal thyroid cells; cadmium; quercetin; ROS

Funding

  1. Department of Health Sciences, University of Catanzaro Magna Graecia

Ask authors/readers for more resources

This study demonstrated the protective effect of quercetin against cadmium-induced damages to normal thyroid cells, including the restoration of cell growth, inhibition of ROS production, reduction of MDA content, and decrease in GRP78 expression in cells exposed to CdCl2.
Various natural compounds have been successfully tested for preventing or counteracting the toxic effects of exposure to heavy metals. In this study, we analyzed the effects of cadmium chloride (CdCl2) on immortalized, non-tumorigenic thyroid cells Nthy-ori-3-1. We investigated the molecular mechanism underlying its toxic action as well as the potential protective effect of quercetin against CdCl2-induced damage. CdCl2 suppressed cell growth in a dose- and time-dependent manner (IC50 value similar to 10 mu M) associated with a decrease in levels of phospho-ERK. In addition, CdCl2 elicited an increase in reactive oxygen species (ROS) production and lipid peroxidation. A significant increase in GRP78, an endoplasmic reticulum (ER) stress-related protein, was also observed. Supplementation of quercetin counteracted the growth-inhibiting action of CdCl2 by recovering ERK protein phosphorylation levels, attenuating ROS overproduction, decreasing MDA content and reducing the expression of GRP78 in cells exposed to CdCl2. Thus, in addition to revealing the molecular effects involved in cadmium-induced toxicity, the present study demonstrated, for the first time, a protective effect of quercetin against cadmium-induced damages to normal thyroid cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available