4.7 Article

Influence of noble metals on the electronic and optical properties of LiH hydride: First-principles calculations

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 46, Issue 71, Pages 35342-35350

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2021.08.095

Keywords

Lithium hydride (LiH); Noble metals; Electronic properties; Optical properties; First-principles calculations

Funding

  1. State Key Laboratory of Industrial Vent Gas Reuse [SKLIVGR-SWPU-2020-03]

Ask authors/readers for more resources

In this study using first-principles calculations, it was found that noble metals have thermodynamic stability in LiH hydride, with Pt-doped LiH showing dynamical stability. The introduction of noble metals improves electronic transfer performance of LiH and eliminates the band gap when H-1s state is induced to the Fermi level. Additionally, Pt doping enhances the optical activity of LiH for visible and infrared light.
Lithium hydride (LiH) has attracted attention because of its high density hydrogen storage energy. However, the poor dehydrogenation properties cannot be used as an effective hydrogen storage material. In this paper, we apply the first-principles calculations to study the influence of noble metals on the electronic and optical properties of LiH hydride. Here, five noble metals TM(TM = Ag, Au, Pd, Pt and Ru) are considered. The calculated result shows that the noble metals are thermodynamic stability in LiH hydride. In particular, it is found that only the Pt-doped LiH is a dynamical stability compared to the other noble metals doping. Here, the calculated band gap of the pure LiH is 3.002 eV. Interestingly, these noble metals are beneficial to improve the electronic transfer (near Fermi level) of LiH because the introduction of noble metal induces the H-1s state to the Fermi level, making the band gap of the noble metal doped LiH disappear. In addition, we study the influence of noble metal Pt on the optical properties of LiH. It is found that the Pt doping can enhance the optical activity of LiH for visible light and infrared light, presumably caused by the addition of d state. (C) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available