4.7 Article

Highly efficient photocatalytic conversion of gas phase CO2 by TiO2 nanotube array sensitized with CdS/ZnS quantum dots under visible light

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 46, Issue 62, Pages 31634-31646

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2021.07.067

Keywords

CO2 reduction; Photocatalysis; TiO2 nanotube array; Quantum dots sensitization; Visible light

Funding

  1. National Science Foundation for Young Scientists of China [51606019]
  2. National Natural Science Funds for Distinguished Young Scholar [51925601]
  3. International Cooperation and Exchange of the National Natural Science Foundation of China [51620105011]

Ask authors/readers for more resources

The composite photocatalyst of CdS/ZnS quantum dots sensitized TiO2 nanotube array exhibited high performance for photocatalytic conversion of CO2 to methanol under visible light, with the product yield varying with different CO2 flow rates and light intensities.
With the massive consumption of fossil fuels, energy crisis and effectively reducing CO2 to curb global warming have become urgent and severe problems in the world. Photocatalytic conversion of CO2 technology which can convert CO2 into combustible compounds by using solar energy can solve both of the problems mentioned above. However, the photocatalytic conversion of CO2 exhibits too low efficiency, especially under visible light. So, in order to improve the photocatalytic efficiency, the composite photocatalysts of TiO2 nanotube array (TNTA) sensitized by CdS/ZnS quantum dots (QDs) were successfully prepared by anodization method and successive ionic layer adsorption and reaction (SILAR) method in this work. And the composite photocatalysts exhibited a high performance for photocatalytic conversion of gas-phase CO2 to methanol under visible light. X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscope (TEM), and X-ray photoelectric spectroscopy (XPS) were employed to characterize the ingredients and morphologies of the synthesized photocatalysts. And, UV-vis diffuse reflectance spectra (UV-Vis DRS) revealed that CdS/ZnS QDs enhanced the photo-absorption of composite photocatalyst in the visible light region. The main product methanol yield of CdS/ZnSTNTA under visible light was 2.73 times that of bare TNTA when TNTA was treated by 10 SILAR cycles. Meanwhile, the product yield first increased before decreasing with the increase of the CO2 flow rate. And the greatest product yield reached up to 255.49 nmol/(cm(2)-cat.h) with the increase of light intensity. The reaction mechanism was discussed in this paper. This high performance for photocatalytic reduction of CO2 was primarily attributed to the CdS/ZnS QDs sensitization, which widens the response wavelength range of the catalyst to include visible light and partly inhibits the recombination of electron-hole pairs. (C) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available