4.7 Article

Is iridium demand a potential bottleneck in the realization of large-scale PEM water electrolysis?

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 46, Issue 46, Pages 23581-23590

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2021.04.174

Keywords

Proton exchange membrane water electrolysis; PEM electrolyzer; Hydrogen economy; Iridium; Catalyst loading; Market model

Ask authors/readers for more resources

Proton exchange membrane water electrolysis (PEMWE) is a key technology for future sustainable energy systems, using iridium as catalyst for the oxygen evolution reaction. To meet the immense future iridium demand, it is essential to reduce iridium catalyst loading in PEM electrolysis cells and develop a recycling infrastructure.
Proton exchange membrane water electrolysis (PEMWE) is a key technology for future sustainable energy systems. Proton exchange membrane (PEM) electrolysis cells use iridium, one of the scarcest elements on earth, as catalyst for the oxygen evolution reaction. In the present study, the expected iridium demand and potential bottlenecks in the realization of PEMWE for hydrogen production in the targeted GW a(-1) scale are assessed in a model built on three pillars: (i) an in-depth analysis of iridium reserves and mine production, (ii) technical prospects for the optimization of PEM water electrolyzers, and (iii) PEMWE installation rates for a market ramp-up and maturation model covering 50 years. As a main result, two necessary preconditions have been identified to meet the immense future iridium demand: first, the dramatic reduction of iridium catalyst loading in PEM electrolysis cells and second, the development of a recycling infrastructure for iridium catalysts with technical end-of-life recycling rates of at least 90%. (C) 2021 The Author(s). Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC. This is an open access article under the CC BY license (http://creativecommons.org/ licenses/by/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available