4.7 Article

Ion-Exchanged UPG-1 as Potential Electrolyte for Fuel Cells

Journal

INORGANIC CHEMISTRY
Volume 60, Issue 16, Pages 11803-11812

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.1c00800

Keywords

-

Funding

  1. Agencia Espanola de Investigacion/Fondo Europeo de Desarrollo Regional [PID2019-106662RBC43]
  2. Comunidad de Madrid (Spain) [EPUC3M04]

Ask authors/readers for more resources

Research has shown that ionic exchange can significantly improve the conductivity and cyclability of electrolyte materials in proton-exchange membrane fuel cells. Metal-organic frameworks have higher stability and proton conductivity compared to organic polymers, providing a potential alternative for electrolytes.
Proton-exchange membrane fuel cells are an attractive green technology for energy production. However, one of their major drawbacks is instability of the electrolytes under working conditions (i.e., temperature and humidity). Some metal-organic frameworks (MOFs) have recently emerged as promising alternative electrolyte materials because of their higher stability (compared with the organic polymers currently used as electrolytes), proton conductivity, and outstanding porosity and versatility. Here, we present ionic exchange in a microporous zirconium phosphonate, UPG-1, as an efficient strategy to enhance its conductivity and cyclability. Thus, labile protons of the hybrid structure were successfully replaced by different alkali cations (Li+, Na+, and K+), leading to 2 orders of magnitude higher proton conductivity than the pristine UPG-1 (up to 2.3 x 10(-2) S.cm(-1) , which is comparable with those of the commercial electrolytes). Further, the proton conductivity was strongly influenced by the MOF hydrophilicity and the polarization strength of the cation, as suggested by molecular simulation. Finally, a mixed-matrix membrane containing the best-performing material (the potassium-exchanged one) was successfully prepared, showing moderate proton conductivity (up to 8.51 x 10(-3) S.cm(-1)).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available