4.7 Article

Fine-Tuning Metal and Ligand-Centered Redox Potentials of Homoleptic Bis-Terpyridine Complexes with 4′-Aryl Substituents

Journal

INORGANIC CHEMISTRY
Volume 60, Issue 13, Pages 9956-9969

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.1c01233

Keywords

-

Funding

  1. VMI
  2. Summer Undergraduate Research Institute
  3. Wetmore Funds
  4. Jackson-Hope Funds

Ask authors/readers for more resources

The research shows a strong correlation between the redox potentials of metal- and ligand-centered events with the Hammett parameters of aryl substituents. The introduction of a phenyl spacer results in a significant decrease in electron density, affecting the redox properties of homoleptic transition-metal complexes.
Homoleptic transition-metal complexes of 2,2':6',2 ''-terpyridine (terpy) and substituted derivatives of the form [M(R-terpy)(2)](2+) display a wide range of redox potentials that correlate well to the Hammett parameter of the terpy substituents. Less is known about the impact of incorporating a phenyl spacer between the functional group responsible for controlling the electron density of terpy and how that translates to metal complexes of the form [M(4'-aryl-terpy)(2)](2+), where M = Mn, Fe, Co, Ni, and Zn. Herein, we report our studies on these complexes revealed a good correlation of redox potentials of both metal- and ligand-centered events with the Hammett parameters of the aryl substituents, regardless of aryl-substitution pattern (i.e., the presence of multiple functional groups, combinations of withdrawing and donating functional groups). The phenyl spacer results in 60-80% attenuation of electron density as compared to the 4'-substituted terpy analogue, depending on the metal and redox couple analyzed. Density functional theory calculations performed on a simple model system revealed a strong correlation between the Hammett parameters and lowest unoccupied molecular orbital energies of the corresponding substituted pyridine models, thus serving as an inexpensive predictive tool when coupled with electrochemical data. Overall, these data suggest that such ligand modifications may be used in combination with previous approaches to further fine-tune the redox potentials of homoleptic transition-metal complexes, which may have applications in photochemical and electrochemical catalytic processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available