4.7 Article

Modeling Co-Channel Interference in the THz Band

Journal

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
Volume 70, Issue 7, Pages 6319-6334

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TVT.2021.3089427

Keywords

Interference; Channel models; Wireless communication; Interchannel interference; Solid modeling; Signal to noise ratio; Shadow mapping; Interference modeling; co-channel interference; signal-to-interference-plus-noise ratio (SINR); signal-to-interference ratio (SIR); terahertz (THz) communications; compound channel model

Ask authors/readers for more resources

The co-channel interference in the THz band can have a significant impact on signal detection and network reliability, requiring appropriate spatial arrangement and coordination to avoid it.
Terahertz (THz) wireless technology is envisioned to enable terabit-per-second (Tbps) and secure transmissions in sixth-generation (6G) communication networks and has attracted attention from academia and industry in recent years. Because the transmission range of THz radios is restricted compared to that of microwave radios, frequency reuses in the THz band become much more flexible and even possible among transceiver pairs in close proximity. However, without appropriate spatial arrangement and coordination, the frequency reuse in the THz band can also lead to severe co-channel interference and result in a low signal-to-interference-plus-noise ratio (SINR) or a signal-to-interference ratio (SIR), which finally degrades signal detection and network reliability. To thoroughly study the co-channel interference in the THz band, we model the co-channel interference by the compound channel model and analyze it in detail. The adopted channel model captures the key features of THz communication, such as, spreading loss, molecular absorption loss, and dynamic shadowing, which is much different and complicated than those used in the low-frequency band. The resulted SINR and SIR are investigated by approximating the sum of co-channel interference as a gamma distribution. The generalized analytical results are also reduced to specialized forms for two special cases, i.e., the single-interferer case and the case of multiple independent and identically distributed (i.i.d.) interferers. Due to the generalized nature of the THz interference model constructed in this paper, the results play a meaningful role in practical implementation and can be easily extended to advanced performance analyses for THz communication systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available