4.7 Article

Effects of different light wavelengths from LEDs on oxidative stress and apoptosis in olive flounder (Paralichthys olivaceus) at high water temperatures

Journal

FISH & SHELLFISH IMMUNOLOGY
Volume 55, Issue -, Pages 460-468

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.fsi.2016.06.021

Keywords

Caspase-3; Acute thermal stress; TUNEL assay; Comet assay; Programmed cell death

Funding

  1. Ministry of Oceans and Fisheries, Korea
  2. National Institute of Fisheries Science

Ask authors/readers for more resources

We investigated how different light spectra affect thermal stress in olive flounder (Paralichthys olivaceus), using light emitting diodes (LEDs; blue, 450 nm; green, 530 nm; red, 630 nm) at two intensities (0.3 and 0.5 W/m(2)) at relatively high water temperatures (25 and 30 degrees C, compared to a control condition of 20 degrees C). We measured the expression and activity of antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), and the levels of plasma hydrogen peroxide (H2O2) and lipid peroxidation (LPO). Furthermore, the levels and mRNA expression of caspase-3 were measured, and terminal transferase dUTP nick end labeling (TUNEL) assays of liver and comet assays were performed. The expression and activity of antioxidant enzymes, as well as plasma H2O2 and LPO levels were significantly higher after exposure to high temperatures, and significantly lower after exposure to green and blue light. Caspase-3 levels and mRNA expression showed a similar pattern. The TUNEL assay showed that apoptosis markedly increased at higher water temperatures, compared with the 20 degrees C control. In contrast, green light irradiation decreased apoptosis rate. Furthermore, the comet assays showed that nuclear DNA damage was caused by thermal stress, and that green light irradiation played a role in partially preventing this damage. Overall, these results suggest that light with green and blue wavelengths can reduce both high temperature-induced oxidative stress and apoptosis, and that particularly green light is efficient for this. Therefore, green light can play a role in protecting in olive flounder from thermal stress damage. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available