4.6 Article

Combined Ultrasound and Photoacoustic Image Guidance of Spinal Pedicle Cannulation Demonstrated With Intact Ex Vivo Specimens

Journal

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
Volume 68, Issue 8, Pages 2479-2489

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TBME.2020.3046370

Keywords

Bone segmentation; coherence imaging; landmark registration; photoacoustic imaging; spinal fusion

Funding

  1. NSF CAREER Award [ECCS-1751522]
  2. NIH [R00-EB018994]

Ask authors/readers for more resources

The study developed a combined ultrasound and photoacoustic image guidance system to assist in accurate placement of pedicle screws and avoidance of bone breaches in spinal fusion surgeries. The use of coherence-based ultrasound imaging improved visualization of bony structures and successfully distinguished signals within the pedicle from impending bone breaches. These results show promise in enhancing visualization and assisting surgeons in identifying and preventing impending bone breaches during pedicle cannulation.
Objective: Spinal fusion surgeries require accurate placement of pedicle screws in anatomic corridors without breaching bone boundaries. We are developing a combined ultrasound and photoacoustic image guidance system to avoid pedicle screw misplacement and accidental bone breaches, which can lead to nerve damage. Methods: Pedicle cannulation was performed on a human cadaver, with co-registered photoacoustic and ultrasound images acquired at various time points during the procedure. Bony landmarks obtained from coherence-based ultrasound images of lumbar vertebrae were registered to post-operative CT images. Registration methods were additionally tested on an ex vivo caprine vertebra. Results: Locally weighted short-lag spatial coherence (LW-SLSC) ultrasound imaging enhanced the visualization of bony structures with generalized contrast-to-noise ratios (gCNRs) of 0.99 and 0.98-1.00 in the caprine and human vertebrae, respectively. Short-lag spatial coherence (SLSC) and amplitude-based delay-and-sum (DAS) ultrasound imaging generally produced lower gCNRs of 0.98 and 0.84, respectively, in the caprine vertebra and 0.84-0.93 and 0.34-0.99, respectively, in the human vertebrae. The mean +/- standard deviation of the area of -6 dB contours created from DAS photoacoustic images acquired with an optical fiber inserted in prepared pedicle holes (i.e., fiber surrounded by cancellous bone) and holes created after intentional breaches (i.e., fiber exposed to cortical bone) was 10.06 +/- 5.22 mm(2) and 2.47 +/- 0.96 mm(2),espectively (p < 0.01). Conclusions: Coherence-based LW-SLSC and SLSC beamforming improved visualization of bony anatomical landmarks for ultrasound-to-CT registration, while amplitude-based DAS beamforming successfully distinguished photoacoustic signals within the pedicle from less desirable signals characteristic of impending bone breaches. Significance: These results are promising to improve visual registration of ultrasound and photoacoustic images with CT images, as well as to assist surgeons with identifying and avoiding impending bone breaches during pedicle cannulation in spinal fusion surgeries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available