4.6 Article

Smoothing of digital elevation models and the alteration of overland flow path length distributions

Journal

HYDROLOGICAL PROCESSES
Volume 35, Issue 7, Pages -

Publisher

WILEY
DOI: 10.1002/hyp.14271

Keywords

digital elevation models; flow path modelling; hydrology; LiDAR; roughness; smoothing

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC) [400317]

Ask authors/readers for more resources

Smoothing DEMs can alter the distribution of overland flow path lengths, with effects dependent on landscape relief and flow direction derivation, suggesting the importance of choosing an appropriate method based on landscape relief and smoothing needs.
DEM smoothing is a common pre-processing technique used to remove undesirable roughness from a DEM. However, it is hypothesized that smoothing straightens and reduces the length of overland flow paths, which is an important factor controlling modelled time-to-peak flow. Currently, there is a lack of research comparing how different smoothing techniques alter the distribution of overland flow path length. Four low-pass filtering techniques were applied to three fine-resolution LiDAR DEMs of varying relief: the mean filter, the median filter, the Gaussian filter, and the feature-preserving DEM smoothing (FPDEMS) filter, each with different degrees of smoothing. Downslope-distance-to-stream distributions were then derived using D8 and D infinity flow directions and statistically compared to distributions derived from the unsmoothed DEM for each study site. The results indicate that the alteration of flow path length distributions as a result of smoothing is complex. Mean flow path lengths may decrease or increase in response to smoothing, depending on landscape relief and the derivation of flow directions, and generalized flow paths may become longer. The largest increase in mean flow path lengths was 19.2 m using the 21 x 21 median filter and D8 flow directions in the high-relief study site, relative to an unsmoothed mean length of 138.6 m in this site. The largest decrease in mean flow path length was 48.9 m using the 21 x 21 mean filter and D infinity flow directions in the low-relief study site, relative to an unsmoothed mean length of 290.9 m in this site. Furthermore, minimal flow path length alterations were achieved with the Gaussian filter when gentle smoothing is required, and with the FPDEMS filter when moderate to aggressive smoothing is required. These results suggest that an appropriate smoothing method should be chosen based on the relief of the landscape and the degree of smoothing required.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available