4.5 Article

Conversion of amplitude modulation to phase modulation in the human cochlea

Journal

HEARING RESEARCH
Volume 408, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.heares.2021.108274

Keywords

Amplitude modulation; Phase modulation; Otoacoustic emissions; Nonlinearity; Cochlea

Funding

  1. NTT Corporation

Ask authors/readers for more resources

Research shows that AM-to-PM conversion occurs in the human cochlea, and listeners can use PM information to process AM of sounds. OAE experiments support this phenomenon and reveal a correlation between PM and AM in auditory perception.
When an amplitude modulated signal with a constant-frequency carrier is fed into a generic nonlinear amplifier, the phase of the carrier of the output signal is also modulated. This phenomenon is referred to as amplitude-modulation-to-phase-modulation (AM-to-PM) conversion and regarded as an unwanted signal distortion in the field of electro-communication engineering. Herein, we offer evidence that AM-to PM conversion also occurs in the human cochlea and that listeners can use the PM information effectively to process the AM of sounds. We recorded otoacoustic emissions (OAEs) evoked by AM signals. The results showed that the OAE phase was modulated at the same rate as the stimulus modulation. The magnitude of the AM-induced PM of the OAE peaked generally around the stimulus level corresponding to the compression point of individual cochlear input-output functions, as estimated using a psychoacoustic method. A computational cochlear model incorporating a nonlinear active process replicates the above mentioned key features of the AM-induced PM observed in OAEs. These results indicate that AM-induced PM occurring at the cochlear partition can be estimated by measuring OAEs. Psychophysical experiments further revealed that, for individuals with higher sensitivity to PM, the PM magnitude is correlated with AM-detection performance. This result implies that the AM-induced PM information cannot be a dominant cue for AM detection, but listeners with higher sensitivity may partly rely on the AM-induced PM cue. (c) 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available