4.5 Article

Fabrication and stability of ultrafine ZrC nanoparticles dispersion strengthened sub-micrometer grained W alloy

Journal

FUSION ENGINEERING AND DESIGN
Volume 169, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.fusengdes.2021.112483

Keywords

Thermal stability; Thermal shock; Particles; Tungsten-based materials

Funding

  1. National Natural Science Foundation of China [51771184, 11735015, 51801203, 11674319, 51771181, 51671184]
  2. Natural Science Foundation of Anhui Province [1808085QE132]
  3. Science and Technology on Surface Physics and Chemistry Laboratory [JZX7Y201901SY00900103]
  4. Innovation Center of Nuclear Materials for National Defense Industry

Ask authors/readers for more resources

An ultrafine ZrC nanoparticles dispersion strengthened sub-micrometer grained W-0.5 wt% ZrC alloy was successfully fabricated using an improved ball milling and spark plasma sintering (SPS) process. The alloy exhibits high thermal stability and thermal shock resistance, with a higher grain growth temperature compared to rolled specimens, as well as a crack threshold at room temperature similar to most carbide dispersion strengthening tungsten alloys. Additionally, a quantitative relationship between Vickers micro-hardness and grain size of sintered W-based alloys has been proposed.
An ultrafine ZrC nanoparticles dispersion strengthened sub-micrometer grained W-0.5 wt% ZrC alloy (W-ZrC) were fabricated by an improved ball milling and spark plasma sintering (SPS) process. The as prepared W-ZrC has an average grain size of -0.86 mu m with an average second-phase particle size of 24 nm. The thermal stability and thermal shock resistance of this W-ZrC alloy were investigated systemically by comparison with the reported rolled specimens. For this W-ZrC alloy, the evolution of microstructure with annealing temperature indicates that the occurrence temperature of grain growth is up to 1400 degrees C-1500 degrees C, which is higher than that of the as-rolled one (-1350 degrees C). Moreover, the crack threshold (100 shots) at room temperature is in the range of 0.22-0.33 GW/m2, which is similar to that of most carbide dispersion strengthening tungsten alloys. In addition, a quantitative relationship between Vickers micro-hardness and grain size of sintered W-based alloys has been proposed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available