4.7 Article

Statistical study on engine knock oscillation and heat release using multiple spark plugs and pressure sensors

Journal

FUEL
Volume 297, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2021.120746

Keywords

Engine knock; Pressure oscillation; Auto-ignition; Multiple linear regression; Wiebe function; Acoustic resonance

Funding

  1. King Abdullah University of Science and Technology (KAUST)

Ask authors/readers for more resources

The study investigates the use of a specialized liner with four side spark plugs to trigger controllable knock and produce different in-cylinder flame propagations. Various spark strategies are applied to analyze knock intensities, with results showing the importance of pre-oscillation growth in pressure oscillation amplitude and the effectiveness of four spark ignitions in reducing heat release fluctuations. Insights are provided into the pressure wave propagation during knock and the relationships between knock conditions, pressure oscillations, and heat release.
Engine knock has been an inherent problem that limits engine efficiency improvement and threatens engine service life. To trigger the controllable knock, a specialized liner with installing four side spark plugs mounted on the cylinder head are used in this study to produce various in-cylinder flame propagation. Various spark strategies (e.g., spark timing, spark number, spark location) are applied to generate different auto-ignition sites and knock characteristics. Up to five channels of pressure signal are collected to analyze the knock intensities regarding different spark strategies. To investigate the knock-induced fluctuations and heat release, we use the multiple correlations to evaluate the maximum amplitude of pressure oscillation (MAPO) respecting different influential factors and building a multiple linear regression (MLR) model for MAPO prediction and validate it against the experiment results. Besides, the Wiebe function and curve-fitting techniques are applied to estimate the energy released by auto-ignition in each cycle, and its relations with knock intensity are assessed. The results show that the average growth of pre-oscillation plays an important role in MAPO value (correlation coefficient, r_s = 0.965), the established MLR model possesses high accuracy for MAPO prediction. The pressure oscillation regarding the 1st resonance mode is extracted from the band-pass filtered signal, representing the main pressure oscillating process. Compared with the single spark ignition, triggering more spark plugs could boost the fuel consumption rate, while shortening the knocking combustion duration and reducing the heat release fraction contributed by auto-ignition. At the same CA50 (9 CAD aTDC), the four spark ignition leads to the least heat release fluctuations than other spark strategies. With advancing the CA50, the heat release fraction produced by knock increases at first then reduces due to the thermodynamic conditions and the flame propagation. Activating two or three spark plugs, the rising rate of the heat release rate goes up, but the knock-induced heat release fraction decreases. Moreover, the primary acoustic resonance mode (1, 0) gives more regular knock vibrations than the mixing form (including mode (1, 0), (0, 1), (2, 0), etc.), the average traveling distance of acoustic wave in the time gap of receiving two continuous signals is very close to the cylinder bore. The results give insights into the pressure wave propagation during knock and the relations between knock conditions, pressure oscillations, and heat release.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available