4.5 Article

The Effect of Prior Knowledge of Color on Behavioral Responses and Event-Related Potentials During Go/No-go Task

Journal

FRONTIERS IN HUMAN NEUROSCIENCE
Volume 15, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fnhum.2021.674964

Keywords

N2; P3; Go; No-go task; reaction time; prior knowledge of color; event-related potential; Stroop

Funding

  1. Japan Society for the Promotion of Science [19H03977, 20K19708, 20J21369]
  2. Grants-in-Aid for Scientific Research [20K19708, 19H03977, 20J21369] Funding Source: KAKEN

Ask authors/readers for more resources

The meaning of color significantly influences behavioral responses, especially in contexts like traffic signals. Prior knowledge impacts reaction times and event-related potentials, with quicker responses to blue signals and slower responses with lower Go probability.
In daily life, the meaning of color plays an important role in execution and inhibition of a motor response. For example, the symbolism of traffic light can help pedestrians and drivers to control their behavior, with the color green/blue meaning go and red meaning stop. However, we don't always stop with a red light and sometimes start a movement with it in such a situation as drivers start pressing the brake pedal when a traffic light turns red. In this regard, we investigated how the prior knowledge of traffic light signals impacts reaction times (RTs) and event-related potentials (ERPs) in a Go/No-go task. We set up Blue Go/Red No-go and Red Go/Blue No-go tasks with three different go signal (Go) probabilities (30, 50, and 70%), resulting in six different conditions. The participants were told which color to respond (Blue or Red) just before each condition session but didn't know the Go probability. Neural responses to Go and No-go signals were recorded at Fz, Cz, and Oz (international 10-20 system). We computed RTs for Go signal and N2 and P3 amplitudes from the ERP data. We found that RT was faster when responding to blue than red light signal and also was slower with lower Go probability. Overall, N2 amplitude was larger in Red Go than Blue Go trial and in Red No-go than Blue No-go trial. Furthermore, P3 amplitude was larger in Red No-go than Blue No-go trial. Our findings of RT and N2 amplitude for Go ERPs could indicate the presence of Stroop-like interference, that is a conflict between prior knowledge about traffic light signals and the meaning of presented signal. Meanwhile, the larger N2 and P3 amplitudes in Red No-go trial as compared to Blue No-go trial may be due to years of experience in stopping an action in response to a red signal and/or attention. This study provides the better understanding of the effect of prior knowledge of color on behavioral responses and its underlying neural mechanisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available