4.7 Article

Stress relaxation of particulate whey protein hydrogels

Journal

FOOD HYDROCOLLOIDS
Volume 118, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.foodhyd.2021.106786

Keywords

Whey protein; Particulate hydrogel; Indentation velocity; Poroelasticity; Viscoelasticity

Funding

  1. Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions

Ask authors/readers for more resources

The relaxation mechanics of hydrogels depend on how stresses are dissipated: through the polymeric network, through the flow of the entrapped solvent, or through both mechanisms. Particulate protein gels present two well identified and separated relaxation regimes: poroelastic and viscoelastic.
The relaxation mechanics of hydrogels depend on how stresses are dissipated: through the polymeric network, through the flow of the entrapped solvent, or through both mechanisms. Particulate protein hydrogels, prepared from whey proteins at pH 7 and 0.1 M NaCl, were investigated using micro-relaxation tests to investigate the role of the microstructure. When deforming gels at high velocities (-400 ?m/s), there is little relaxation during loading and the subsequent extensive relaxation is identified to be poroelastic by using different indenter sizes. The effective diffusivity and solvent permeability are estimated to be -6 ? 10-9 m2/s and 5 ? 10-17 m2 respectively, which are one magnitude order larger than in protein hydrogels with a stranded microstructure. When indenting gels at low speeds (-20 ?m/s), the poroelastic relaxation due to solvent flow occurs mostly during the loading step, and the subsequent relaxation is mostly viscoelastic in nature. Particulate protein gels, therefore, present two well identified and separated relaxation regimes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available