4.5 Article

Atmospheric Plasma Technique Assessment for the Development of a Polyfunctional End-use Polyester Fabric

Journal

FIBERS AND POLYMERS
Volume 22, Issue 10, Pages 2782-2791

Publisher

KOREAN FIBER SOC
DOI: 10.1007/s12221-021-0847-7

Keywords

Dielectric barrier discharge; Plasma; Polyester; Wettability; Zeta potential

Ask authors/readers for more resources

The study found that atmospheric air plasma treatment can introduce new chemical elements on the surface of polyester fabric, improve its capillarity, enhance surface roughness, and improve the moisture absorption performance of the fabric. The extent of treatment depends on the selection of plasma parameters.
The effects of atmospheric air plasma treatment based on dielectric barrier discharge (DBD) technology on the surface alteration of a woven polyester (PET) textile fabric were investigated. Chemical and physical surface modifications were characterized by specific wettability measurements (water contact angle-WCA and % capillarity), scanning electron microscopy (SEM), zeta potential assessments, Fourier transform infrared spectroscopy (FTIR) and chemical quantification analysis using ortho-toluidine blue (TBO) dye before and after the DBD processing. A striking enhancement of capillarity percentage from 1.6 % to 108 % was ensured by the plasma treatment suggesting that special chemical elements such as hydroxyl, carbonyl, and carboxyl groups were embedded on the polyester surface, thereby offering it a new hydrophilic behavior. The morphological analysis revealed that plasma treatment is a suitable mechanism to enhance the roughness of treated samples improving furthermore the water retention of the fabric and making the structure more adapted to further chemicals applications. The zeta potential and chemical quantification analysis were also of great interest since they reveal overall the same trend as do the wettability measurements and confirms that the extent of surface modification is in big dependency to the selected plasma parameters. Dyeability of untreated and plasma treated samples was also investigated in terms of color strength, in addition to wash and rub fastness. Sufficiently, higher dyeing performances were noted for plasma treated polyester when compared to the untreated fabric. Atmospheric air plasma treatment was found to be an effective approach to boost the technical reactivity of PET fabrics opening up new opportunities for surface modification under the growing environmental and energy-saving concerns.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available